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PRINTED IN GREAT BRITAIN 

CONCEPTS OF INFINITY 

IT is well known that mathematical studies have pros
pered in the University College of Swansea since its 

foundation; but I believe this is the first inaugural lecture 
to be given here by a professor of pure mathematics. 
I should like to be able, on this occasion, to explain what 
pure mathematics is about, for that is certainly a matter 
on which there are widespread misunderstandings. But 
such an objective would require many lectures, and a 
variety of lecturers. The task I have set myself is there
fore a very limited one: I propose to discuss just a few of 
the ideas that make up the foundations of the subject. 
I shall try to do this in a way that will illustrate the 
development of mathematical thought in comparatively 
recent times. 

Although the history of mathematics goes back to 
classical antiquity and beyond, pure mathematics can 
hardly be said to have existed before the middle of the 
nineteenth century. It has grown prodigiously since then, 
and the knowledge already accumulated greatly exceeds 
the capacity of any individual mind. To be effective 
nowadays, a mathematician has to specialize fairly nar
rowly. My own special interests belong to the branch of 
pure mathematics known as 'analysis'. This can be 
loosely described as the theory of infinite processes, and 
its origins can be traced to the invention of the calculus 
in the seventeenth century. 

In essence, the calculus was a method of representing 
some very subtle concepts by an algebraic formalism that 
was rather easy to manipulate. The power of this method 
was demonstrated by the spectacular achievements of 
Newton, 1 which marked the beginning of what is now 
called applied mathematics. But the ease of manipulation 

I 1642-1727. 
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was deceptive: few of the early practitioners seem to 
have understood the conceptual basis of the calculus at 
all clearly, and some of them were tempted to enlarge the 
formal structure without paying proper attention to the 
foundations. This sort of thing happened on a large scale 
in the eighteenth century, which was an age of decadence 
for mathematics. Under the dominating influence of 
Euler, 1 the formalities of the calculus, and related formali
ties such as those of infinite series, were elaborated with 
much ingenuity but little regard for logic. In 1734, the 
philosopher Berkeley2 published a tract called The Analyst 
in which the unsoundness of much contemporary mathe
matical thought was clearly exposed; but although this 
checked some of the wilder excesses, it provoked no 
significant devel_opment of analysis. The time, apparently, 
was not ripe. 

Great advances were made, however, during the nine
teenth century, mainly in France and Germany. Among 
the pioneers were Gauss3 and Cauchy4 in the early part 
of the century, Riemann5 and Weierstrass6 in the middle, 
Dedekind7 and Cantor8 towards the end. Of these, Cantor 
probably had the most original mind, and it may be 
significant that he suffered a good deal from mental ill
ness. By the end of the century, the scope and power of 
the calculus had immensely increased, and its foundations 
were secure. Moreover, through the work of Cantor, the 
modern theory of infinite sets had begun to evolve. This 
theory has profoundly influenced the development of 
analysis in the present century, and I shall try to describe 
some of its fundamental ideas. 

Consider first the sequence of natural numbers-the 
numbers we use for counting: 

l 1707-83. 
5 1826-66. 

I, 2, 3, 4, .. . 
2 1685-1753. 
6 1815-97. 

3 1777-1855. 
7 1831-1916. 

4 1789-1857. 
8 1845-1918. 

•• 
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This sequence does not come to an end, for there is no 
largest number. The totality of natural numbers is thus 
an example of an infinite set. (It is, of course, a set of ideas, 
existing in the mind; there may well be no such thing as 
an infinite set of physical objects.) In contrast, a finite set 
is a collection of individuals (ideas, or physical objects) 
which can be counted, in the sense that a different natural 
number can be assigned to each member of the set, the 
numbers so assigned being those that are not greater than 
some particular number. If we have two finite sets, A and 
B, we can find out whether or not they have the same 
number of members by counting both sets. But there is 
another method, wliich does not involve counting. It 
consists in pairing members of A with members of B: 
if this can be done in such a way that each member of A 

has a unique counterpart in B, and there are no members 
of B left over, then, and only then, are the sets A and B 

equally numerous. Thus, while I cannot say how many 
shoes I possess, for I have not counted them recently, 
I have no hesitation in saying that the number of left 
shoes that I have is the same as the number of right shoes. 
Now this second method of comparison is applicable to 
infinite sets as well as to finite ones. For example, let A 

be the totality of natural numbers and let B be the totality 
of even numbers, 

2, 4, 6, 8, ... 

There is an obvious pairing here: the members of B are 
obtained by doubling those of A. We can say, therefore, 
that these two infinite sets are equally numerous. Since, 
in this case, B is a part of A, it appears that a part can 
be 'equal' to the whole (if we use the word 'equal' to mean 
'equally numerous'). This is a characteristic property of 
infinite sets. 

The fact that the members of one set can sometimes be 
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paired with those of another, giving what is technically 
known as a 'one-to-one correspondence', suggests a 
method of classifying infinite sets. A set that can be put 
into one-to-one correspondence with the set of all natural 
numbers is said to be countably infinite; and for con
venience the word 'countable' is used to mean 'either 
finite or countably infinite' (though of course only a 
finite set can actually be counted). It is quite easy to 
show that any part of a countable set is countable, and 
that a set is countable if it can be divided into a countable 
set of parts each of which is countable. These facts enable 
us to discern many examples of countably infinite sets. 
One such example is the set of all the numbers with 
which elementary arithmetic is concerned-the so-called 
rational numbers, of which I shall have more to say later. 
:But, as Cantor was the first to show, uncountable sets 
also exist: an example is the set of all sets of natural 
numbers. The set of all permutations of the sequence of 
natural numbers is also uncountable. 

The idea of a sequence, which is one of the primitive 
notions on which mathematics is founded, involves the 
recognition of a natural order of precedence among the 
natural numbers. These numbers constitute, in fact, not 
merely a set but a set with certain structural properties. 
By considering some of those properties in isolation, 
using a typically mathematical process of abstraction, we 
can arrive at the idea of a 'well-ordered set'. A set A is 
said to be well ordered if a notion of precedence is defined 
among its members in such a way that the following two 
conditions are satisfied: first, if x and y are members of A, 

and x precedes y, then y does not precede x; second, if B 
is any part of A having more than one member, then 
there is a member of B which precedes every other 
member of B. When a set of natural numbers is ordered 
in the usual way, so that the lesser of two numbers is 
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considered to 'precede' the greater, we have an example 
of a well-ordered set. It is this fact that gives validity 
to the well-known principle of mathematical induction, 
which is a powerful instrument of deductive reasoning. 

A set may have a natural ordering with which it is not 
well ordered. For example, the set of all positive rational 
numbers, ordered by magnitude in the usual way, is not 
well ordered, since it has no smallest member. However, 
this set, and indeed any countable set, can be well ordered 
merely by putting it into one-to-one correspondence with 
a set of natural numbers. In 1904 Zermelo, 1 a German 
mathematician, published a proof that every set can be 
well ordered. This led to the formulation of an extended 
principle of mathematical induction. The new principle, 
known as 'transfinite induction', is indispensable in mod
ern analysis and has important applications in several 
other branches of mathematics. 

For a considerable time, however, the validity of 
Zermelo's result was a matter of dispute among leading 
mathematicians. This was because the proof depended in 
an essential way on the proposition that if an infinite set 
is divided into infinitely many parts, then there is a set 
consisting of exactly one member from each of those parts. 
This proposition, which has become known as 'the axiom 
of choice', may seem at first to be self-evident; but it was 
objected to on the grounds that the set whose existence it 
asserts might require for its specification infinitely many 
-perhaps uncountably many-individual acts of choice. 
It was held to be inconceivable that such a procedure 
could ever be completed. Put in this way, the objection 
resembles the famous argument put forward by Zeno, 2 in 
the fifth century B.c., to show that Achilles could never 
catch up with the tortoise; but it is much harder to refute. 

The controversy over the axiom of choice arose at a 
I 1871-1953, 2 495-435. 
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time when mathematicians were very sensitive about the 
need for care in defining sets. Several disconcerting para
doxes had been noticed, and these suggested that there 
might be serious flaws in the foundations of Cantor's 
theory. Some mathematicians, indeed, were disposed to 
reject the theory altogether. The trouble was that what 
appeared to be a proper definition of a set sometimes 
turned out not to be. For example, there are natural 
numbers that can be expressed in fewer than fifteen 
words of the English language, and we can consider ( or 
so it would seem) the set that consists of all such num
bers: this is surely a finite set, since the English language 
does not have an infinity of words (we could fix the num
ber of words available by deciding on a particular diction
ary). It should therefore make sense to speak of 'the 
smallest natural number that cannot be expressed in 
fewer than fifteen English words'; but I have used only 
fourteen words to express this number, so we have a 
contradiction. The only conclusion we can draw is that, 
contrary to appearance, our 'set' has not been properly 
defined. It is not surprising that in the presence of such 
anomalies the axiom of choice was viewed with suspicion: 
how could one be sure that its unrestricted use might not 
lead to a nasty contradiction? 

This was one of the questions that gave rise to the 
modern science of mathematical logic; but it was a long 
time before a satisfactory answer was given. As an interim 
measure, mathematical proofs were classified as 'construc
tive' or 'non-constructive', those that depended on the 
axiom of choice being regarded as non-constructive. 
Many mathematicians thought it prudent to give con
structive proofs whenever they could manage to do so, 
and some went so far as to regard non-constructive proofs 
as entirely inadmissible. However, bold exploitation of 
the axiom of choice also took place, notably in Poland, 
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where the new method of transfinite induction was used 
to great effect in the development of analysis. 

Eventually, in 1940, the celebrated logician Kurt Godel 
produced what most analysts have interpreted as a vindi
cation of the axiom of choice. He showed that if, by 
legitimate reasoning, one could deduce a contradiction in 
the theory of sets with the help of the axiom of choice, 
then one could also deduce such a contradiction without 
invoking this axiom; in other words, the axiom of choice 
is logically consistent with those propositions in the 
theory of sets that can be established without its aid. 
That it is also independent of those propositions, in the 
sense that it cannot pe deduced from them, was proved 
in 1956 by a youngAmerican logician,Elliott Mendelson. 
Thus, while constructive proofs may still be preferable to 
non-constructive ones when they are available, it must be 
expected that some mathematical propositions will be 
provable only by non-constructive methods. Some of the 
most important propositions in analysis seem to be of 
this kind. 

The ultimate ingredients of analysis are the natural 
numbers, but it is not so much the numbers themselves 
as certain relations between them that are of interest. 
Relations that can be expressed in terms of addition and 
multiplication are particularly important, and the con
cept of number can be usefully generalized by means of 
such relations. For example, the idea of a ratio is expres
sible in terms of multiplication, for when we say that p 
bears the same ratio to q as r does to s we mean that the 
product of p and s is the same as the product of q and r. 
Ratios can be added, multiplied, and compared as to 
magnitude, according to definitions that naturally suggest 
themselves; the ratios then form an arithmetical system 
which can be regarded as an enlargement of the system 
of natural numbers ( since each natural number can be 
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identified with the ratio it bears to the number 1 ). In the 
enlarged system the operation of division can be carried 
out without restriction: a ratio of ratios is a ratio. By 
considering differences of ratios one can define an even 
larger system, that of the rational numbers. The positive 
rational numbers can be identified with the ratios, and 
with each of these we associate the 'opposite' negative 
number, the system being completed by the special num
ber zero. Except that we cannot divide by zero, all four 
of the fundamental operations of arithmetic have free 
play within the system of rational numbers, subject to the 
algebraic laws that are implicit in the definitions of these 
operations. 

The Greeks, with their love of proportion, were deeply 
interested in the arithmetical properties of ratios. From 
the time of Pythagoras, I they knew that the number 
2, among other natural numbers, cannot be expressed 
as the product of two equal ratios. However, in Greek 
geometry it was implicitly assumed that length and area 
could be measured by numbers belonging to some arith
metical system that included the ratios, and that the 
operations of addition and multiplication in this system 
corresponded to certain geometrical constructions. From 
these rather sweeping assumptions it was easy to 
deduce that if the length of one side of a square were 
represented by the number I, then the length of each 
diagonal would have to be represented by a number 
whose product with itself is 2. (I am alluding, of course, to 
the famous theorem about 'the square on the hypotenuse'.) 
It was therefore necessary to postulate the existence of 
'numbers' which, though not ratios, were yet comparable 
with ratios and subject to the same kind of arithmetic. 
This was done explicitly by Eudoxus2 (a pupil of Plato3), 
who proposed a system of postulates which seems to have 
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been the foundation of subsequent Greek thought on this 
subject. It has often been said that the Greeks ' discovered' 
irrational numbers, but this is scarcely correct: they dis
covered a need for such numbers, and they met the need 
by formulating a hypothesis. Their hypothesis remained 
unverified-and apparently unquestioned-for some 
2,000 years. 

Greek arithmetic was concerned only with what we 
now call 'positive' numbers. Ideas of negative numbers, 
and of zero, came much later: they seem to have filtered 
into European thought, from Hindu and Islamic sources, 
during the Middle Ages, when algebra was beginning to 
take shape. The early algebraists, however, were interested 
in the manipulation of symbols rather than the clarifica
tion of concepts. They contributed to the development 
of mathematics mainly by inventing notational devices 
which served to mechanize some of the processes of 
arithmetical reasoning. The system of numbers in which 
this reasoning was supposed to operate was an extension 
of the Greek system, and no less hypothetical. 

The rise of analysis in the nineteenth century shar
pened the need for an arithmetical system larger than 
that of the rational numbers. The required system had to 
conform to a rather exacting specification. It had to 
resemble the system of rational numbers in providing full 
scope for the fundamental operations of arithmetic, and 
in being so ordered that every number other than zero 
would be either positive ( that is, greater than zero) or 
negative (less than zero); and this ordering had to be 
compatible with the arithmetical structure, in the sense 
that sums and products of positive numbers should 
always be positive. But beyond these requirements a 
crucially important condition had to be satisfied; namely, 
that if one were to divide the system into two parts, A 

and B, in such a way as to make every member of A less 
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than every member of B, then either A would have a 
greatest member or B would have a least member. That 
a system having all these properties could actually exist 
was not known for certain until 1872, when Dedekind 
showed that certain infinite sets of rational numbers 
could be used to construct exactly what was needed. 
Dedekind's system is known as 'the continuum', and its 
individual members are called 'real numbers'. An alter
native method of constructing the continuum was given 
a few years later by Cantor, who made a very detailed 
study of its fundamental properties. 

One of the more obvious properties of the continuum 
has to do with the idea of 'bounds' for sets of numbers. 
A number b is said to be an upper bound for a set S 
of numbers if there is no member of S greater than b. 
Now, in the continuum, any set that has upper bounds 
must have a least upper bound, and this fact has many 
important consequences. For example, consider the set 
that consists of every real number whose product with 
itself is less than 2: this set has a least upper bound, and 
it is easy to show that the product of this bound with 
itself is exactly 2. Thus the continuum includes some at 
least of the irrational numbers needed in Greek geometry. 
In fact it includes all such numbers. 

Suppose now that we have in mind some countable set 
C (perhaps a set of natural numbers) and a prescription 
that assigns what I shall call a 'value' to each member 
of C, each value being a real number which is either 
positive or zero. Then we can assign a total value to each 
finite part of C by adding together the values attached to 
the individual members of that part. (Different members 
may have the same value, and it is to be understood that 
such a value would be repeated an appropriate number 
of times in the summation-as in the adage '2 and 2 make 
4' .) The totals thus obtained, by considering all the finite 
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parts of C, form a set of real numbers which may or may 
not have upper bounds. If C happens to be a finite set, 
such upper bounds certainly exist, and the least of them 
is the total value of the whole set C. However, if C is an 
infinite set its total value cannot be defined arithmetically, 
since addition is essentially a finite process: even a high
speed computer can never perform an infinity of opera
tions. Nevertheless, if the set of totals for the finite parts 
of C has upper bounds, then, in the continuum, it has a 
least upper bound; and it is natural to define the total 
value of C to be this least upper bound. By so doing we 
are able to transcend arithmetic. We have here one of the 
simplest examples of an 'infinite process'; it is a process 
of summation involving a countable infinity of terms, 
none of which is negative. 

To consider a specific example of this kind of summa
tion, suppose that C is the set of all natural numbers, and 
let the value 1 be assigned to the number I, ½ to the 
number 2, ¼ to the number 3, and so on, each value being 
obtained from the preceding one by halving. It is then 
a fairly simple matter to show that the total value is 2. 

In this case each individual term is rational, and the total 
is rational. But there are cases in which the terms are 
rational and the total is irrational. For example, take C 
to be the set of natural numbers as before, let the value I 

be assigned to the number 1, and let each subsequent 
term be obtained by dividing its predecessor by a number 
that is 1 at the first step and is then increased by I for 
each subsequent step: thus the first term is 1, the second 
term is also 1, the third is ½, the fourth is ¼, the fifth is /4, 

and so on. It is then easy to show that the total is an 
irrational number between 2 and 3. In this case, however, 
and in others like it, we can find rational numbers as 
close to the total as we please by adding finitely many of 
the terms, appropriately chosen. (Any irrational number 



14 CONCEPTS OF INFINITY 

can be approximated arbitrarily closely by rational num
bers, and this fact is very important in some of the 
applications of analysis-particularly in applications that 
involve the use of digital computers, for such machines 
cannot handle numbers that are not rational.) 

The process of summation that I have been describing 
is subject to an awkward limitation. In order that the 
total value of the set C should exist in the continuum, it 
is necessary that the set of totals for the finite parts of C 

should have upper bounds in the continuum. That this 
condition is not always satisfied can be seen by consider
ing the case in which C is an infinite set and the value 
given to each of its members is 1. The limitation can be 
overcome by augmenting the continuum in a very simple 
way. We take any mathematical entity which is not a 
number (for example, it might be the set of all natural 
numbers) and call it 'infinity'. We then decree that in
finity shall be deemed to be 'greater than' any real num
ber. The augmented continuum consists of the real 
numbers together with infinity, and in this system every 
set has at least one upper bound. A set of real numbers 
which has no upper bound in the continuum evidently 
has infinity as its least upper bound in the augmented 
continuum. The restriction on our infinite process of 
summation is thus removed. In the case where every term 
is 1, and in many other cases, the total is infinity. 

This device for providing the whole continuum with 
an upper bound is rather more than the mere linguistic 
trick that it might seem to be. The entity that we call 
infinity is not a number, but it can be treated in several 
respects as though it were; in fact it can be allowed to 
take part in a limited kind of arithmetic. For instance, it 
is natural to define the result of 'adding' infinity to any 
real number, or to itself, to be infinity. Moreover, our 
infinite process of summation can be generalized by 
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allowing one or more of the terms to be infinity, the total 
also being infinity in such a case, by definition. This 
generalized process obeys laws similar to those of ordi
nary addition: for instance, if the countable set C is 
divided into parts in any way, and the total values of the 
separate parts are then summed, the resulting 'grand 
total' is always the same. 

The usefulness of these notions can be illustrated by 
considering the important concept of length. For this 
purpose it is helpful to visualize the continuum as a line 
running from left to right: the real numbers are then 
thought of as points on the line, the phrase 'greater than' 
being interpreted as . 'to the right of'. A set of real num
bers is called an inter.vat if there are no gaps in it: that is 
to say, if there is no number which does not belong to the 
set yet lies between two numbers that do belong. An 
interval may, for example, consist of all the numbers that 
lie between two given numbers, together, perhaps, with 
one or both of the given numbers: in such a case, by 
subtracting the lesser of the given numbers from the 
greater, we obtain a positive real number which is called 
the 'length' of the interval. Another possibility is that an 
interval may consist of a single point, in which case we 
define its length to be zero. The length of any interval 
that belongs to neither of these two categories is defined 
to be infinity; for example, the whole continuum is an 
interval whose length is infinity, and so is the set of all 
positive real numbers. Having thus assigned a length to 
every interval, we can inquire into the possibility of 
extending the definition of length so that it applies to 
a larger class of sets. 

A set that is made up of finitely many non-overlapping 
intervals can be considered to have as its length the sum 
of the lengths of the component intervals. It is of course 
necessary to prove that this definition is not ambiguous, 
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by showing that different ways of dissecting the set into 
intervals will always give the same total length: it is not 
difficult to do this. Let us agree to call a set 'simple' if it 
is made up in this way. A little investigation shows that 
the class of all simple sets has three properties which I 
shall now describe. First, if we have a set belonging to the 
class and we add a given real number to each of its points 
(a procedure which can be visualized as a shifting of the 
set bodily to the right or to the left), then the set so 
obtained belongs to the class and has the same length as 
the original set. Secondly, if a set belonging to the class 
is partly included in another such set, then both the 
included part and the excluded part are sets that belong 
to the class. Thirdly, if a set can be dissected into two 
parts that belong to the class and have no point in com
mon, then the whole set belongs to the class and its length 
is the sum of the lengths of the separate parts. Any larger 
class of sets to which the concept of length might be 
usefully extended ought to have at least these three 
properties. 

The third property is somewhat stronger than it looks: 
we can easily deduce, by mathematical induction, that 
if a set can be dissected into finitely many non-overlapping 
parts each of which belongs to a class having this property, 
then the whole set belongs to the class and its length is 
the sum of the lengths of the separate parts. For this 
reason the property is described as 'finite additivity'. 
For certain purposes of analysis, however, it is very 
desirable to have an even stronger property, known as 
'countable additivity' : this is defined in the same way as 
finite additivity except that we replace the phrase 'finitely 
many' by 'countably many', using our infinite process of 
summation to interpret the phrase 'the sum of the 
lengths' in the case of a set which is divided into a 
countable infinity of parts. 
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It is clear that if the concept of length can be extended 
so as to meet the requirement of countable additivity, 
then every countable set of real numbers must have zero 
length, since each individual point has zero length. It 
follows that the requirement could not be met if the 
continuum were countable, since the length of the con
tinuum is infinity. But in fact the continuum is not count
able, and the requirement of countable additivity can be 
met. The first definition of length that was satisfactory in 
this respect was given in 1898 by the French mathemati
cian Emile Borel1 (who later took a prominent part in the 
debate on the axiom of choice). The class of sets to which 
Borel extended the concept of length is in fact the smallest 
class that contains the intervals and satisfies the other 
requirements. Sets that belong to this class are known as 
'Borel sets'. Every countable set of real numbers is, of 
course, a Borel set whose length is zero; in particular, 
every set of rational numbers has zero length. Thus, 
although every interval of positive length contains in
finitely many rational numbers, such an interval owes its 
length entirely to the irrational numbers that it contains. 

In 1902 a further extension of the concept of length 
was made by Lebesgue,2 a French mathematician whose 
work forms one of the corner-stones of modern analysis. 
The sets that Lebesgue considered are called 'measur
able' sets. The class of all measurable sets is larger than 
that of the Borel sets, but in a sense it is not much larger, 
for every measurable set can be dissected into two parts 
of which one is a Borel set and the other is a measurable 
set of zero length. This small difference turned out to be 
of great importance for the solution of certain problems 
that had arisen in the development of the calculus. These 
problems concerned the process known as 'integration'. 
The modern theory of this process, created during the 
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present century, is one of the most sublime achievements 
of the human intellect. 

I shall not attempt now to explain precisely what the 
measurable sets are, or why they are so important; but I 
have said enough to indicate that the measurable sets of 
zero length have a special significance. Much of this 
significance comes from the fact that if a set is measurable 
and has zero length then every part of it is a measurable 
set of zero length; whereas certain Borel sets of zero 
length have parts which are not Borel sets. This deficiency 
in the system of Borel sets was revealed by Lebesgue in 
1905. In the same year the Italian analyst Vitali1 gave the 
first proof of the existence in the continuum of sets that 
are not measurable. His proof shows, in fact, that it is 
fundamentally impossible to extend the concept of length 
from the class of all simple sets to the class of all sets in 
the continuum in such a way as to satisfy the requirement 
of countable additivity. This is obviously an important 
result, if only because it prevents those who know about 
it from wasting their time in trying to devise a definition 
of length that would apply to every set in the continuum. 
It is interesting to note, therefore, that Vitali's proof 
depended on the axiom of choice, and that no-one has 
succeeded in showing that non-measurable sets exist 
without making some appeal to this axiom. 

In conclusion, I should like to mention some facts that 
make a strong contrast with what I have just said. If we 
are willing to accept finite additivity instead of countable 
additivity (a severe restriction), then it is possible to 
extend the concept of length from the class of all measur
able sets to the class of all sets in the continuum. A method 
of proving this was described in 1923 by Banach,2 one of 
the leaders of the Polish school of analysis that was 
beginning to flourish strongly at about that time. Banach's 

J 1875-1932. 
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method, however, involved the use of transfinite induc
tion, and no constructive proof of the result has yet been 
found. (I should add that this particular result is by no 
means the most important of Banach's contributions to 
analysis; but it does answer an interestin? P?ilosophical 
question, and the method has other apphcat10ns.) 

I have come to the end of this lecture, and I know that 
I have not done much to illuminate the nature of pure 
mathematics. But one thing at least must I think be clear: 
the mere existence of infinite sets of numbers is a guaran
tee that the subject will never have been fully explored. 
The scope for mathematical research is, and will always 
be, infinite. 
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