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THE COMING OF AGE OF 
COMPUTER TECHNOLOGY 

The last century has witnessed the birth of many technologies 
which have grown up through infancy and adolescence 

to reach maturity. The days of infancy are marked by the 
first halting steps taken by the early pioneers, men with the 
vision to conceive how a basic human desire or activity could 
be served by making an invention. This may be based on 
existing manufacturing expertise or require the development of 
a whole new technology which often extends beyond the bounds 
of the first inyention. Such pioneering inovations are explor­
ations which begin because of the inventor's intuition that there 
is some new truth to be found-not always because he believes 
that the discovery is of immediate value. The inventions are 
often the toys of the inventor, built because they can be built 
rather than because they are known to be useful. During the 
infancy of a technology many weird and wonderful devices 
are constructed and tested. Some of these reach the adolescent 
stage, when the most useful examples are tested by a widening 
range of people who are attracted , to some extent, by the novelty 
of the invention but also by the need to use it . As the adol­
escent stage progresses, the inventors are forced to devote more 
effort to develop the usefulness of their toys . The users are 
beginning to be selective in their choice of inventions and to 
appreciate the uses to which they can be put . 

The inventions best fitted to serve the most important uses 
survive, and definitive forms for accepted devices become 
extant. At some time during adolescence, the collection of 
inventions reaches the status of a body of knowledge, which 
becomes the basis for design. Design criteria and principles of 
good practice begin to emerge . Design teams grow around the 
successful inventors, and the product of each team has its own 
characteristic style. There is still a tendency for inventions to 
be made for their own sake, but each new invention is now 
measured against performance and economic criteria before 
it is adopted. The motive for new developments becomes the 
need to make the technology more acceptable to the human 
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race ; to adapt the technology to the human being. At this 
point the technology can be said to have ' come of age '. 
Later, during maturity, the style of the early design teams is 
lost as generally accepted methods of design and construction 
become established. There is still development of the tech­
nology, but this goes on at a much slower pace. It depends 
upon the gathering of knowledge about the use to which the 
technology is put, the emergence of new uses for the technology, 
the discovery of new manufacturing techniques, and the ability 
of a new invention to provide extra benefits within the existing 
framework of design expertise, capital investment in manu­
facturing plant, and above all, the specification which the user 
has grown to demand. 

An important characteristic of a mature complex technology 
is the proliferation of devices and systems which grow because 
of the existence of the original invention and which are nec­
essary for its full exploitation. The railway engine requires 
a network of lines and associated signalling systems to provide 
a safe, reliable, rail service ; the modern motor car would be 
useless without a good road system ; and an airliner requires 
airport services, air traffic control, and air navigation systems 
to be effective. 

The original invention at the heart of a technology can be 
thought of as its "hardware", whilst all the supporting services 
which enable the hardware to be fully exploited by man may 
be thought of as the "software". Maturity sees developments 
in both the hardware and the software. For successful growth, 
both must harmonise and develop together. 

It must be remembered that without the existence of the 
hardware in the first place, the software would be impotent . 
Furthermore, a single development in the performance of the 
hardware is likely to produce a more significant impact on the 
power of a technology than developments in the software could 
ever achieve. (The replacement of the poston-engined airliner, 
such as the Dakota, by the turbo -prop airliner such as the 
Viscount, revolutionised air transport technology). Yet each 
hardware breakthrough requires a development of its sup­
porting software before full benefit can be enjoyed. If the 
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softweare did not exist, the hardware would remam the 
inventor's toy . 

This interplay and interdependance of hardware and soft­
ware is perhaps most evident in one of man's more complex 
technologies, that of information processing so-called Computer 
Technology. Let us now trace its evolution through the early 
years until the definitive form of the basic hardware emerges, 
and then follow the development of electronic computers up to 
the present-day, at one major British centre. Along the way 
we shall attempt to identify the components which have given 
computers the potential power to make an impact on society 
and the concepts which unleash this power. We shall see how 
the technology has developed into a hierarchy of levels of 
knowledge and expertise as it approaches maturity. Finally, 
we shall discuss the role of a University in furthering its future 
development . 

In the beginning, the abacus was invented to assist in 
computation. There was then a long pause in the pioneering 
phase until Napier, Leibnitz and Pascal invented aids to 
computation in the 1 7th century. The next major advance was 
made by Charles Babbage in the early 19th century. Charles 
Babbage, born in 1791, was elected to the Lucasian Chair of 
Mathematics at Cambridge in 1828, and held the post for 
eleven years without giving a single lecture in the University. 
In 1822 he had constructed his first "difference engine" which 
was intended to mechanise the computation required in tht> 
production of mathematical tables. He planned to build a 
much larger machine, working to twenty decimal places and 
sixth order differences. Government support was obtained for 
this project, but was withdrawn in 1842 with the work unfin­
ished . However, a model of the "difference engine" was 
demonstrated at the International Exhibition of 1862-and a 
difference engine was later used for calculating the life tables 
needed for computing Insurance premiums. 

There were many reasons why the ambitious "difference 
engine" was never completed . It required accurate machining 
of mechanical parts before the necessary techniques had been 
established. One of Charles Babbage's co-workers was 
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Whitworth who, after this salutory experience, went on to lay 
down the principles of mechanical engineering practice. 
The invention was ahead of the technology. If we remember 
that ~his v:ork began before the era of the steam railway*, we 
can 1magme the technological difficulties which Babbage 
encountered. Society was beginning to realise that physical 
labo~r could be assisted by machines, but it was not ready to 
consider how the drudgery of mental and clerical work could 
also be alleviated. Babbage realised that the difference engine 
was capable of assisting in the computations required for one, 
and only one, particular problem-the production of math­
ematical tables. The mechanism would have to be altered to 
solve a different class of problems. The difficulties of manu­
facturing that one piece of hardware, combined with the 
appalling prospect of starting all over again to manufacture 
hardware to solve a different problem, caused him to think 
again. It led him to suggest the idea of a basic computing mill, 
capable of performing a few standard operations on numbers 
h~ld in a mechanical memory, and a mechanism whereby the 
nnll could ~e. controlled to carry out these operations in the 
sequence reqmred to complete the computation. The numbers 
in the memory and the sequence-or program-of operations 
could be readily changed to make the mill solve many problems. 
The mechanism he used to effect the program control was the 
Jacquard punched roll system, used to control the patterns 
produced by weaving looms. Just as one Jacquard loom could 
be made to produce a wide range of patterns, so could the mill 
be made to complete a wide range of computations. This 
program-controlled mill he called the "analytical engine" 
which he invented in 1833. 

The ideas about the exact form of the engine and the methods 
of programming it were developed in collaboration with the 
daughter of Lord Byron, Ada Augusta Countess of Lovelace, 
who was the first computer programmer. 

Charles Babbage's enthusiasm for the analytical engine 

*It is interesting to note that Babbage collaborated with I. K. Burne! of Great 
Western fame and designed the first dynamometer car. 
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deflected him from his ambitious difference engine but the 
i1:adequacies of the technology let him down agai~, and he 
died one hundred years ago, in 1871, without seeing his 
engines in operation. But he left behind the concept of a 
general _-purpose computer with programmed control, which is 
the basis of all modern computers. 

The next pioneer was Hollerith who, in the 1890s, took the 
Jacquard punched roll and invented the punched card to 
assist in the computations required by the U.S. census. This 
idea was later developed, and found application in commercial 
data processing. 

The advance of telephone technology led to the develop­
ment of the electro-magnetic relay which was used by the Bell 
Telephone Laboratories in the construction of a computer in 
1933. Relays were again used by Harvard University in the 
construction of a computer similar to the analytical engine. 
This was completed in 1944-one hundred and eleven years 
after Babbage conceived the idea. 

Radio and the explosive growth of electronics during the 
second world war, produced the technology which made it 
possible for the Moore School of Electrical Engineering at the 
University of Pensylvannia to build the first electronic computer 
the ENIAC, in 1946. 

By now, the form of the computer was beginning to emerge 
and was clarified by the contributions of Turing and Von 
Neuman. Turing put Babbage's concept on a sound theoretical 
basis by developing the idea of a universal logical computing 
machine which could be transformed into different particular 
machines by the superposition of programs. The hardware of 
the universal machine could be made to function to suit the 
particular requirement by the superposition of software. Each 
particular combination of hardware and software existing as a 
mach~ne which can be more readily understood by its user, 
who 1s able to control it by writing simple programs in a 
language which he readily understands. 

Von Neuman considered the structure of such machines. 
He realised that the most suitable number representing scheme 
within the hardware was the binary system. Data could be 
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efficiently represented as combinations of the Boolean truth 
values by the absence or presence of an electrical voltage or 
current. Logical, hence arithmetic, operations could be 
accomplished by the opening and closing of electrical switches. 
Furthermore, the instructions to control the sequence of the 
program could also be represented, or coded, in a similar way. 
Thus both types of information within the machine - data and 
instructions-could be represented by the binary system. The 
next step was to suggest that the memory unit attached to the 
mill of the engine be used to store both the data and instruc­
tions required to execute a particular task. This stored program 
computer offered many advantages ; the program roll could 
be read once into the memory and the program executed from 
the memory at a high rate. The program could be made to 
alter itself within the memory ; a repetitive operatio .u could 
be programmed as a single sequence, obeyed many times by 
instructions which permit recycling of the sequence over and 
over again ; the ability to test the state of data in the memory 
and, as a result of the test, cause the next instruction to be 
taken out of sequence, i.e. to conditionally jump to another 
part of the program, made it possible to break out of a closed 
cycle and proceed to the next part of the program. These are 
the basic ingredients of the comput er as we know it today. 
Such a machine is shown in Fig. I. The data and instructions 
necessary for the computation are first read from the input 
punched roll into pre-assigned locations, or addresses, within 
the memory. To obey the program, the Program Control 
Device presents the address of the first instruction to the mem­
ory ; the instruction is read into a Present Instruction Register , 
from where its components are routed to present the address of 
the Data to the memory, to obtain the operand required b) 
the MILL, and the MILL operation is selected. The operand is 
processed by the MILL and it is then ready for the Program 
Control Device to access the next instruction, and so on. 
During the course of the computation, answers are formed in 
the memory from whence they are written on to the Output 
Roll, as required. 
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FIG. 1 BASIC STORED PROGRAM COMPUTER 

This complicated diagram can be subdivided into three 
major sections :-

(I) !nput a~d Output mechanisms for communicating 
mformat10n between the computer and its user. 

(2) The Memory to store all the information required by 
the computer to complete its task. 

(3) The Mill, and the circuits to route information within 
the computer and to control the various stages in the 
process . 

To trace the development of the technology of each of these 
sections, let us consider the evolution of comput ers at the 
University of Manchester. This evolution is typical of that 
which occurred at other major centres in the world. 
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In 1947 Professor F. C. Williams returned to the Depart­
ment of Electrical Engineering in the Univ ersity of Manchester 
from T.R.E. with the idea that a memory could be based on 
the persistence-or afterglow-of a cathode ray tube (CRT). 
He demonstrated that a pattern of binary digits could be stored 
on the face of a CRT and the persistence could be maintained 
by reading each digit in turn, before it had died away comple­
tely, and then restoring it to its original state of brilliance . This 
tube formed the basis of the first experimental machine which 
obeyed its first program in the autumn of 1947. It had a simple 
mill-or accumulator-and arithmetic operations, routing, 
and related control were accomplished by thermionic valve 
circuits. The input mechanism was a simple binary keyboard, 
and the output was obtained by visual inspection of the CRT. 
Williams and Tom Kilburn (now Professor of Computer 
Science at the University of Manchester) went on to construct 
several prototype machines until a large-scale machine was 
built in 1949-a development which formed the basis for the 
Ferranti Mk. I Computer in 1951, the first commercially 
available computer in the world. This machine was based on 
the CRT memory which, though well-matched to the speed of 
the accumulator circuits, was of limited size, storing only 5 1 2 

numbers of data or instructions. The size of the memory was 
increased by adding magnetic drums on which 650,000 
binary digits, or bits, of information were stored in much the 
same way as speech is recorded on a magnetic tape. Input 
facilities were provided by a photoelectric paper tape reader, 
whilst output was obtained by a mechanical paper tape punch 
and teleprinter. Use of the prototype machines had created a 
demand for certain facilities to improve programming efficiency 
the most notable of these being the address modification, or 
indexing mechanism*. Developments in thermionic valve 

*It is interesting at this point to record the contributions made by three Welsh­
men. D. B. G. Edwards, of Pontypridd (now Professor of Computer Engineering 
at the University of Manchester , who has contributed in many ways to the 
development of computing at Manchester) ; G. E. Thomas, from Port Talbot (now 
Director of the Edinburgh Regional Computer Centre) ; and E. T. Warburton, 
also of Pontypridd (now doyen of computer designers in British Industry) . All 
three were involved in the design of these early machines , which owed much to 
their originality, determination, and engineering skill. 
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technology made it possible to produce a faster more reliable 
computer ~hich was de~eloped_by Ferranti Ltd .' as the Mercur; 
co_mputer m 1956. This machme also contained an improved 
~mll ca~able o_f performing operations on numbers represented 
~n fl.oatmg-pomt from-a further demonstration of the users' 
mfluence on the machine specification. 

An experi~ental transistorised computer was operating in 
_1953 which mfluenced the design of such machines by British 
mdustry, but the next major advance began in 1958 at the 
start of what became the ATLAS Computer . 

By 1958 there had been ten years experience in the use of 
computers at Manchester. Two types of user were beginning to 
emerge. The first h~d la_rge problems, which could sensibly 
use muc? of the machme time based on a few programs which, 
once ':'ntten and tested, would run many times on different 
sets ofmput data. The second had a list of many small problems 
each requiring a different program, and probably only one run 
on the computer to produce results. The large problem users 
-:,-vere_ pr~pared to take a long time to understand fully the 
mtencacies of the computer, to acquire the necessary prog­
ramming skills, and to learn the language of the hardware. 
The small probl em users found this less rewarding. They 
den:i~nd_ed that the hardware be augmented by the super­
posit10nmg of_ software to present to them a language which 
t~ey could qmckly learn to use with accuracy. These so-called 
high-level languages, or Autocodes, are translated into the 
hardware language by Compiler programs in the machine. 
The J?roble1:1 facing the ATLAS designers was to produce a 
~achme ':'hich would provide facilities to assist the compilers 
m p_roducmg hardware language programs which would run 
efficiently when compared with programs written directly in 
the_ . ~ardware language by skilled programmers. These 
facilities had to be provided in a way which would not cheat the 
hardware language programmer by reducing the efficiency of 
the machine. 

The Yon Neuman _type memory by this time was provided 
by a high-speed ferrite core memory, in which each bit of 
information is remembered by the direction of magnetisation 
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of a ferrite ring, backed by a large magnetic drum memory. 
A similar memory hierarchy existed on the earlier machines in 
which the programmer had to arrange for information to be 
brought down from the drum (it was actually located on the 
floor above), to be processed in the high-speed memory. 
Much skill was required of the programmer to anticipate the 
time at which the relevant piece of information passed under 
the fixed reading station, located above the surface of the 
rotating drum ; also the working space of the memory was 
restricted to the size of the high-speed memory. This led to 
many programming problems connected with the movement 
of information up from the high-speed memory to make room 
for that brought down drom the drum. The problem was 
solved by allowing the ATLAS programmer to think of the 
memory working area as one level equal to that available on 
the drum. In practice, the computer Mill still operated on 
information contained in the high-speed ferrite core memory, 
and transfers between the drum and the core were effected 
automatically on demand. This one-level memory concept 
was a major advance which had unforeseen ramifications ­
which we shall consider later. 

The successful improvement in the ease of computer use was 
bound to increas e the number of users and jobs to be processed. 
Each job has to be fed into the computer and produces data 
which must be fed out. The traffic through the peripheral 
input/output devices would increase. Whilst there had been 
many improvements in the efficiency of existing peripherals, 
and new ones, such as magnetic tape, line printer, and graphic 
displays were being rigorously developed, there was still a 
large discrepancy between the speed of any one peripheral and 
the computing rate within the machine. The only way to keep 
pace was to attach many peripherals onto a single computer and 
allow simultaneous transfers between them and its memory. 
This Time Sharing of a powerful computer between many 
concurrent activities was made possible by the inherently 
high speed of the computer plus hardware facilities which 
permitted special software-known as Supervisor or Operating 
System-to be superimposed to manage the flow of information. 
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' These were some of the problems faced by the ATLAS project. 
They would not have been solved but for the significant 
advance which had occurred in the technology of computer 
hardware. We have already noted the development of the 
ferrite core memory. This offered greater reliability and higher 
speed than could be obtained by the CRT. The other major 
development was that of semiconductor devices, the diode and 
the transistor, which supplanted thermionic devices as the 
basic components of the circuits in the Mill, routing and 
control sections of the computer. These were more reliable, 
consumed less power than their predecessors, and offered the 
possibility of parallel processing of information within the 
computer. Numbers could be added, not one digit at a time 
in a single circuit, but all digits at once by many circuits. The 
smaller size and inherent speed of these devices caused the 
designers to be concerned about the path length of information 
routes and the time taken for an electrical signal to pass along 
a piece of wire, determined ultimately by the speed of light. 

During the infancy of this project, many semiconductor 
circuits were invented and evaluated to produce the range of 
basic circuits which could be constructed in sufficient numbers 
to build the machine. Different methods of using the ferrite core 
were tried until the most suitable memory was designed. 
Designers of the Mill and related circuits experimented with 
different ways to use the basic devices until a design philosophy 
was established. A prototype machine was built to test the 
major technological innovations.* 

The next phase was marked by the drawing up of the final 
design specification, followed by the long process of design 
documentation, construction, inspection, and commissioning of 

. *~his is one of the most exciting phases of a major project , similar in its emotive 
s1gmfica1:ce to when your first child beigns to walk, or learns to read. When he is 
takmg his first steps you ~onder if hw will ever wak l, until at last one joyful day 
da:"ns when he walks as 1f he h~d been doing it all his life. After this day you 
qmckly forget that there was a time when he could not walk and it is taken for 
granted. So, in the development ofa computer, there is a tim e'w hen it cannot add 
two and two together . One feels it should be able to , but it cannot. One makes 
many_tes'.s f<;> fin? the reason , until the last wire finally falls into place and, amid 
greatJubilat10n , 1t adds correctly. From then on one takes it for granted and goes 
on to face many oth er tribulations and joys. ' 



the machine to reach a stage of reliability at which it could 
take on its computing load. During this phase, principles of 
sound engineering practice had to be established, and the 
existing computer used to assist in the production of design 
documents and to simulate some of the more complicated 
designs. Maintenance engineers had to be trained and suitable 
test procedures evaluated so that the computer could continue 
to give reliable service. The stage of maturity was reached 
during the early 1 960s when the software, comprising both 
compilers and supervisor, was able to give the users the 
facilities they required ; and the hardware level of reliability 
was such that the shift maintenance engineers were able to 
clear faults without calling the designer out of his bed in the 
wee small hours of the morning. 

The first production model of the ATLAS provided computing 
facilities to the University until it was finally switched off last 
month. Several production models were manufactured and 
are still in use in important computer centres in the United 
Kingdom. Some of the concepts pioneered in ATLAS were 
ahead of their time and have only recently been incorporated 
into other commercial computers. It became the paragon with 
which all the modern large computers are compared. 

Once the computer was providing a service to users, the 
engineers were naturally banned from trying to improve its 
performance by testing new circuits or devices since during, 
and shortly after, each test the impaired reliability of the 
computer would be intolerable, and such changes to the hard­
ware would have serious repercussions on the software, and 
hence the user programs . The software writers were similarly 
banned from making changes to proven software, but were · 
able to add features and monitor the efficiency of the total 
system and the way in which it operated, to give guidance in 
the drawing up of the specification of its successor. 

By 1966 it became possible to review the ATLAS design and 
its usage in the light of developments elsewhere in Computer 
Technology. Most of the computer users never saw its hard­
ware. They tossed their programs into a wire tray on the floor 
below and returned a few hours later to collect their output 
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from the same wire tray. Some users never came to Manchester 
their local terminal equipment being linked by telephone line 
direct into the computer. The remoteness of the user presents 
difficulties during the program development phase when 
programming faults are detected by the machine and reported 
to the programmer. The delay between handing in the 
program and obtaining the report is often inconvenient and 
distorts the programmer's thought process. Other computer 
centres provided interactive program development facilities 
by which the programmer could sit at a teleprinter console 
and key his program direct into the machine, check it, and 
make the necessary corrections until it was satisfactory. Fully 
to incorporate these facilities on top of the existing batch 
processing service required more extensive resources than were 
available in the ATLAS System. 

The hardware of a large time-sharing computer is shown in 
Fig. 2 . It consists of a MrLL and its associated circuits now 
known as a Central Processing Unit (CPU), a main memory 
to hold the information required by the CPU during its 
execution of the program, a large backing memory holding 
data and software, the peripherals for the batch processing 
service, card and tape readers and punches, line printers, etc., 
and the interactive consoles-some local, some remote at 
the end of telephone lines, with a computer (Peripheral 
Processing Unit) to assist in the management of the information 
flow. If one stood amidst the peripheral equipment one would 
see tapes being fed-in via several tape readers, at the same time 
as cards are being punched with output data, at the same time 
as characters are being printed, at the same time as puctures 
are being painted on the graphics terminals, and at the same 
time as several programmers are developing programs at their 
interactive consoles. This hive of activity depends on the 
inherent high speed of the CPU hardware, plus the ability of 
the operating system software to marshall and co-ordinate. 

What the operating system must do is to transform the 
hardware of Fig. 2 into the conceptual system shown in Fig. 3 
in which each of the activities or processes is granted a virtual 
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memory and a virtual processor, which have access to a com­
mon file store and peripheral devices. 

Let us consider three typical concurrent processes : 

Process A : A large program requiring much CPU time. 
Process B : A program to control the flow of data to a 

line printer. 
Process C : A program under development at an 

interactive console . 

Let us assume that the CPU and memory are operating on 
Process A which is in the middle of a matrix inversion (say) 
and that the line printer becomes ready to receive new data. 
Process A will be suspended and Process B entered to copy 
data from the memory to the line printer. When Process B 
has finished its task, Process A will be re-established and allo­
wed to continue with its matrix inv ersion where it left off. 
After a while, Process A may be suspended to allow Process C 
to test the present status of the program under development, 
after which there is a return to Process A, and so on. In spite 
of all this concurrent activity, the line printer is able to print 
lines continously ; the programmer appears to have the whole 
of a machine at his desposal to develop his program, and whilst 
Process A may take longer to completion than if it were the 
only process in the machine, even the user of large programs 
benefits since, whilst Process A is being executed he may also 
be getting output from another of his programs by Process B, 
and the total turn-round time, from putting the program in, 
to getting the answers out, will not suffer appreciably. 

In order for the operating system to effect the mapping of 
Fig. 3 on to Fig. 2, the hardware must provide facilities which 
permit the rapid suspension and re-establishment of a process, 
to allow information in different virtual memories to exist side 
by side in the same actual main memory, and to prevent one 
virtual processor from accessing private information in the 
virtual memory of another, yet allow processes to share common 
information. A key to the solution of these complex problems 
is the One Level Memory concept developed on ATLAS to 
disguise its main memory-backing store hierarchy from the 
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programmer. This concept enables the actual processor to 
offer, to all concurrent processes, a large memory space which 
may be sub-divided to give each process its virtual memory. 
Overlapping of the virtual memory of one process with that 
is of another allowed to permit sharing of information, 
and protection facilities can be readily incorporated. 

Whereas any such concept can be implemented by super­
position of software on to a machine, the full benefit can be 
enjoyed only if special facilities are built into its hardware. 
For this to happen, the hardware designer must be aware of 
the total software problem, attempt to isolate those stages in 
its solution which can benefit from the provision of special 
facilities, and have a complete grasp of the potential power of 
the hardware technology and its ability to provide them 
efficiently. 

In the case of the One Level Memory concept, a major 
problem is to translate the large address of the virtual memory 
into the smaller address of the actual memory. The hardware 
solution is to provide a special address translation mechanism 
known as an associative or content addressable memory . Such 
a mechanism became an economic possibility after the develop­
ment of integrated semiconductor circuits. These superseded 
the discrete semiconductor circuits of the ATLAS and offered 
more complexity at less cost, with higher reliability at higher 
speed. 

The features of the new circuits may be exploited in many 
styles. At one extreme the hardware designer may exploit the 
speed and complexity to produce extremely fast arithmetic and 
data processing facilities with little regard to the needs of the 
software. This results in a very powerful CPU capable of a 
high rate of computation which can be exploited by the writer 
of programs in a low-level language, but which deny the high­
level languages all but a fraction of this rate. At the other 
extreme, the total software requirements may impose a design 
specification on the hardware designer and he must endeavour 
to make the best use of his technology to meet this specification. 
The most successful style, however, is to allow the hardware and 
software considerations to interact to produce a specification 
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which satisfies both ; to obtain a machine structure in which 
the special facilities may be provided by either _software or 
hardware ; by software in the small, low c?st, machmes, and by 
hardware in the larger, more expensive, more powerful, 
machines towards the top of a manufacturer's range. 

By 1966 such a specification was. beginning t_o evolve at 
Manchester. Methods of using and mterconnectmg the new 
integrated circuits had become established, and memory 
technology had developed to keep pace by the introduction of 
plated wire memories to replace the high speed core memory, 
also cheaper core memories to provide low cost mass memo~y. 

The University was again ready to embark on a maJor 
computer project and, with S.R.C . s~ppo~t plus the co­
operation of ICL, the MU-5 computer is bemg constructed. 
It will soon be an operating system-more powerful than the 
ATLAS. 

If we now consider the body of knowledge which makes up 
Computer Technology, we find a hierarchy of levels as show_n 
in Fig. 4. At the lowest level-the circuit level-is the basic 
electrical engineering of the components of the. h_ardware. 
This involves a knowledge of the desired charactenstics of the 
circuits which perform logical operations and provide the 
various levels of memory ; how these characteristics can be 
provided by available devices an~ t?e way in which sue~ 
devices need to be developed to obtam improved performance , 
how to solve the electrical problems which arise when such 
devices are connected together, plus the technology of the 
peripheral equipment. The next level above, logi:al ~esig_n, 
includes a methodology for connecting the basic circmts 
together to perform the various operations ~n a comput~r s1:ch 
as the addition circuit of the MILL and its control circmt~ ­
Above this is the machine structure, or architecture level. This 
is where the interaction between the hardware and software 
takes place ; where the requirements of the us:r an_d software 
writers are considered to arrive at the specificat10n of the 
logical units which will best mak~ up the total hardware of the 
machine. For this level to funct10n properly there must ~~ a 
clear understanding of the software problems and the ability 
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to isolate those which can be effectively solved within the 
capabilities of the hardware. Next comes the system software, 
the writing of the compilers, and the operating system and 
other programs which enable the last level-the user progra­
mmers-to make efficient use of the machines. 

The performance at each level is dependant on the resources 
which can be provided by the next lower level. Ultimately, the 
performance of the user programs depend upon the power of 
the circuits produced by the lowest levels. The way in which 
the performace of these circuits has developed over the years is 
shown by the graph in Fig. 5. The vertical axis measures the 
rate at which an addition can be performed on numbers of 
ten decimal digits. Each point plotted shows the rate obtained 
by the addition circuit of a Manchester computer in the year 
when the hardware was first demonstrated. In 194 7 the first 
adder could operate at the rate of one thousand per second. 
By 1952 improvements in thermionic valve technology and 
design skill resulted in a jump to thirty thousand per second. 
The next jump to three million per second was achieved by the 
exploitation of semi conductor devices, and the present rate of 
twenty million per second is made possible by semi conductor 
integrated circuits and improved constructional techniques. 
Each of these advances was matched by a corresponding 
advance in the technology of the main memory and the 
development of strategies to ensure that the flow of information 
between it and the central processor unit kept pace. It is 
interesting to note that rate of growth prior to 1958 was greater 
than that obtained since then, suggesting that we are appro­
aching the speed limit of electronic technology, which is when 
we can no longer reduce the path length between circuits, and 
must accept the ultimate limitation imposed by the speed of 
light . A modern integrated circuit delays the passage of 
information through it by some 2 nanoseconds ( 2. rn- 0 sees). 
This is similar to the delay along a piece of wire one foot in 
length. The physical size of the circuit and the distance 
between circuits begin to have a serious effect upon the speed of 
the machine. The size is determined to some extent by the fact 
that the circuit has to be handled at various stages of manu-
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facture and test ; it must be in a package large enough to be 
picked up by average sized fingers and thumbs. The distance 
between circuits depends upon the size of the circuits and the 
space to connect the interconnecting wires, power supply, ~nd 
allow cooling fluid to take the heat away. Any further reduct10n 
in circuit delay will have to be associated with the ability to 
pack more circuits into the package, between finger and thumb, 
if possible requiring less power and co~ling than !?resent pack­
ages. Further speed improvements _will be ~btamed _by d:v­
elopments of machine structures which permit a prohferat10n 
of parallel processing circuits to be exploited by the system 
software. 

One might ask why there is this thirst for speed. There are 
two answers to this question. First, there are important large 
problems which demand it, and secondly, it is cheaper to 
serve several small users on one fast machine than to provide 
each with his own slow one . The thrust towards a fast large 
computer leaves many developments in its wake which be~efit 
the machines required in situations which the large, fast, time­
shared machines cannot reach-process control computers, 
vehicular control computers, dedicated laboratory instru-
mentation computers, etc. . 

The growth in speed since 1947 has been the greatest smgle 
factor which has given the upper levels of the computer 
technology hierarchy the nesessary power to produce the 
present impact of computers. 

If one examines the present state of development of computer 
technology, one finds the mature levels at the bottom of the 
hierarchy, maturity decreasing as one ascends. . . . 

The circuit level is well aware of the needs of its immediate 
user, the logic design level. It is also well aware ?f the con­
straints placed upon it by the known laws of physics and has 
the advantage of many yearx of engi1:1eering experience in th_e 
application of electronics technology m the fields of commum­
cation, Radar and control. Design standards and codes of good 
practice which were established in these fields have form:d the 
basis for sound computer engineering. This level awaits the 
discovery of a new physical penomenon, with an information 
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processmg capability, before it can return to a pioneering 
phase. 

Logical design is restricted by the logic circuits which can 
be engineered economically and reliably by the circuit level. 
The laws of logical design based on Boolean algebra are well 
understood and principles of good design are well established, 
now that a logical design can be fully tested by means of 
simulation before the circuit is built. The functional circuits 
which make up a computing system are well understood and 
can be specified to the satisfaction of the logic designers and 
the computer architects. Whilst there is always scope for 
development at this level resulting from its interaction with its 
two neighbours, it awaits the birth of a new idea-possibly 
based on adaptive logic-for it to return to the pioneering 
phase. 

The machine structure level is taking longer to reach 
maturity. This is due on the one hand to the flexibility offered 
by the functional units produced at the logic level, and on the 
other to the complexity and flexibility offered to the system 
software by any computer system. Furthermore it takes several 
years for a computer system to be conceived, designed, con­
structed, and tested in the user environment ; and the 
environment itself changes as the user requirements develop. 

It cannot reach maturity until the next level above is able to 
define the computer structures which it requires. This level, 
system software, is still developing. It_ has to keep_ pace with_ a 
shifting user requirement and new ideas resultmg from Its 
interaction with the computer structure level. It does not 
have the benefit of sound engineering practice, partly because 
most of the workers in this field come from a non-engineering 
background and enjoy experimenting with their new toy. 
There are signs that principles of software engineering are 
becoming established as the innovators realise th~t their id_eas 
have to be implemented by a body of people orgamsed to bmld, 
test and maintain the software in the same way as any other 
pie~e of engineering. When the software fun~tional u:1its can 
be specified as precisely as the hardware funct10nal umts, then 
the software and machine structure levels will have reached 
maturity. 
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Though these principles of sound engineering practice will 
be established and a semblance of maturity will be achieved, 
these two levels still have to interact with the top level, the user. 
There will always be pioneer users since the potential field of 
application of computer technology is not restricted by the 
nature of the technology itself but by what the human mind 
chooses for it. Man will continually discover new uses for 
information processing technology ; uses which we cannot 
perceive at present ; uses which are bound to involve develop­
ments in the upper levels of the hierarchy ; uses which will 
place new demands on all its levels. 

A university which offers a course of instruction in Computer 
Technology must ensure that it can teach all levels of the 
hierarchy in a co-ordinated manner. In its research it can 
concentrate on a particular level or take a microcosm of the 
hierarchy by considering an area of application which involves 
all levels . Such a microcosm could be the application of 
computers in instrumentation. One example, in the medical 
field, is to provide computing facilities for the interpretation 
of chart recordings such as electro-encephlographs. We can 
all appreciate that much of the information on such charts is 
meaningless and that skill is needed to extract that which is 
important for the diagnosis. The doctor requires a computer, 
in the path of the signals between that patient and the chart 
recorder, to eliminate the unwanted information. This 
computer could be a general purpose computer with special 
circuits to translate the signals from the patient into the number 
representing system of the hardware of the computer. A sup­
ervisor program within the computer could manage the flow 
of information from several monitor points on the patient to the 
various processes which carry out the information reduction. 
These processes themselves could be written in a suitable 
high level language which provides the doctor with convenient, 
easy to use, control facilities. Such computer systems have 
been in use for some time, and experience has shown that a 
special class of general purpose computers is required to 
satisfy the many needs at an economic price. It is possible to 
write down the specification of such a machine and plan a 
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development project involving all levels of the hierarchy . 
Such projects are undertaken by industry, but certain ones can 
be fruitfully carried out by a University as a vehicle for main­
taining competence and developing new ideas. The new ideas 
may occur at only one level of the hierarchy, but it is to be 
expected that they will result from a better understanding of 
the interaction of the levels. To begin with, these projects 
will involve the writing of special software for an existing 
computer, plus the provision of special perepherals. The next 
stage will be to design special computers to suit the particular 
requirements. This will become more economical as powerful, 
complex, integrated circuits proliferate. We may evolve away 
from the concepts of Babbage, Turing, and Von Neuman, and 
solve each new user problem by designing a special new 
machine from the lower levels up, providing only sufficeint 
hardware and software to satisfy each user's needs. 

This approach will satisfy only a section of the computer 
technology users. Most will carry out their information 
processing on general purpose computers. In the past we have 
seen a range of general purpose computers to serve the many 
and varied user needs. However, we are beginning to app­
reciate that the economics of the situation dictate that user 
needs be served by a few large, powerful, computers and a 
proliferation of many small low cost machines. This polar­
isation of computers into large and small will come about 
partly because of the development of integrated circuits which 
will make it possible to place a low cost computer in a small 
package. (We are already seeing this impact in the field of 
desk-top calculators which are now based on integrated 
circuits and may soon be as commonplace as a students' slide 
rule), and partly because of the development of a data com­
munications network which will make it convenient for users 
with large problems to have them processed on a remote 
large computer. Such a network will open the door to many 
new information processing developments. The information 
terminal may become as familiar as the telephone. The 
housewife could use the terminal to order her groceries, 
budget her account, decide on the day's menu, and control 
her cooker. 
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The future offers much scope for research at all levels of the 
hierarchy. 

In conclusion let us attempt to sum up the situation. The 
technology has reached a stage at which one computer can 
perform as much arithmetic in one second as one man can be 
expected to perform in his entire working life. Furthermor, the 
computer is not expected to make an error in that one second, 
whereas there must be few men who have not made an error in 
their working lives. We are beginning to realise that there are 
facets to man's information processing needs other than sheer 
accurate arithmetic computation. Some of these needs are 
already being served to some extent in areas such as education, 
information retrieval, medicine, and commerce. As these needs 
develop, the technology will produce systems with a few 
simple controls which are easy to use. The basic components, 
the hardware and the software, will develop and combine to 
achieve this aim, and be able to cope with the new uses which 
man invents for the technology ; uses which will in the long 
term improve the quality of life. 

Finally, I cannot think of a better way to end this lecture 
than to quote Professor F. C. Williams (who was this year 
admitted to an honorary degree by the University of Wales) :-

"Lest the great achievement to date should make us swollen­
headed, or alternatively, make us despair of further imp­
rovement, let me draw your attention to the small object 
glued to the centre of this card ( a seed). This object is so 
small that I doubt if you all can see it, yet it contains all the 
information, data, and instructions necessary to control the 
manufacture of an unending and ever-increasing supply of 
roses." 
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