
Gomerian Press - Llandysul

THE COMING OF AGE OF
COMPUTER TECHNOLOGY

Inaugural Lecture of the
Second Professor of Electrical Engineering

delivered at the College
on October 2 1st, I 971

by

DAVID ASPINALL
M.Sc., Ph.D. (Manchester), C.Eng., F.B.C.S., M.I.E.E.

~
:::~ ::~:.::

UNIVERSITY COLLEGE OF SWANSEA

l

I

c1a rk:

Acc:ellioa ••: 1 I/ h~1
Locatioa:

SWANSEA UNtVt9'SIT'f OOLLEG£

LIBRARY

UNIVERSITY COLLEGE OF SWANSEA

THE COMING OF AGE OF
COMPUTER TECHNOLOGY

Inaugural Lecture of the
Second Professor of Electrical Engineering

delivered at the College
on October 2 1 st, 1971

by .

DAVID ASPINALL
M.Sc., Ph.D. (Manchester), C.Eng., F.B.C.S., M.I.E.E.

THE COMING OF AGE OF
COMPUTER TECHNOLOGY

The last century has witnessed the birth of many technologies
which have grown up through infancy and adolescence

to reach maturity. The days of infancy are marked by the
first halting steps taken by the early pioneers, men with the
vision to conceive how a basic human desire or activity could
be served by making an invention. This may be based on
existing manufacturing expertise or require the development of
a whole new technology which often extends beyond the bounds
of the first inyention. Such pioneering inovations are explor­
ations which begin because of the inventor's intuition that there
is some new truth to be found-not always because he believes
that the discovery is of immediate value. The inventions are
often the toys of the inventor, built because they can be built
rather than because they are known to be useful. During the
infancy of a technology many weird and wonderful devices
are constructed and tested. Some of these reach the adolescent
stage, when the most useful examples are tested by a widening
range of people who are attracted , to some extent, by the novelty
of the invention but also by the need to use it . As the adol­
escent stage progresses, the inventors are forced to devote more
effort to develop the usefulness of their toys . The users are
beginning to be selective in their choice of inventions and to
appreciate the uses to which they can be put .

The inventions best fitted to serve the most important uses
survive, and definitive forms for accepted devices become
extant. At some time during adolescence, the collection of
inventions reaches the status of a body of knowledge, which
becomes the basis for design. Design criteria and principles of
good practice begin to emerge . Design teams grow around the
successful inventors, and the product of each team has its own
characteristic style. There is still a tendency for inventions to
be made for their own sake, but each new invention is now
measured against performance and economic criteria before
it is adopted. The motive for new developments becomes the
need to make the technology more acceptable to the human

3

race ; to adapt the technology to the human being. At this
point the technology can be said to have ' come of age '.
Later, during maturity, the style of the early design teams is
lost as generally accepted methods of design and construction
become established. There is still development of the tech­
nology, but this goes on at a much slower pace. It depends
upon the gathering of knowledge about the use to which the
technology is put, the emergence of new uses for the technology,
the discovery of new manufacturing techniques, and the ability
of a new invention to provide extra benefits within the existing
framework of design expertise, capital investment in manu­
facturing plant, and above all, the specification which the user
has grown to demand.

An important characteristic of a mature complex technology
is the proliferation of devices and systems which grow because
of the existence of the original invention and which are nec­
essary for its full exploitation. The railway engine requires
a network of lines and associated signalling systems to provide
a safe, reliable, rail service ; the modern motor car would be
useless without a good road system ; and an airliner requires
airport services, air traffic control, and air navigation systems
to be effective.

The original invention at the heart of a technology can be
thought of as its "hardware", whilst all the supporting services
which enable the hardware to be fully exploited by man may
be thought of as the "software". Maturity sees developments
in both the hardware and the software. For successful growth,
both must harmonise and develop together.

It must be remembered that without the existence of the
hardware in the first place, the software would be impotent .
Furthermore, a single development in the performance of the
hardware is likely to produce a more significant impact on the
power of a technology than developments in the software could
ever achieve. (The replacement of the poston-engined airliner,
such as the Dakota, by the turbo -prop airliner such as the
Viscount, revolutionised air transport technology). Yet each
hardware breakthrough requires a development of its sup­
porting software before full benefit can be enjoyed. If the

4

softweare did not exist, the hardware would remam the
inventor's toy .

This interplay and interdependance of hardware and soft­
ware is perhaps most evident in one of man's more complex
technologies, that of information processing so-called Computer
Technology. Let us now trace its evolution through the early
years until the definitive form of the basic hardware emerges,
and then follow the development of electronic computers up to
the present-day, at one major British centre. Along the way
we shall attempt to identify the components which have given
computers the potential power to make an impact on society
and the concepts which unleash this power. We shall see how
the technology has developed into a hierarchy of levels of
knowledge and expertise as it approaches maturity. Finally,
we shall discuss the role of a University in furthering its future
development .

In the beginning, the abacus was invented to assist in
computation. There was then a long pause in the pioneering
phase until Napier, Leibnitz and Pascal invented aids to
computation in the 1 7th century. The next major advance was
made by Charles Babbage in the early 19th century. Charles
Babbage, born in 1791, was elected to the Lucasian Chair of
Mathematics at Cambridge in 1828, and held the post for
eleven years without giving a single lecture in the University.
In 1822 he had constructed his first "difference engine" which
was intended to mechanise the computation required in tht>
production of mathematical tables. He planned to build a
much larger machine, working to twenty decimal places and
sixth order differences. Government support was obtained for
this project, but was withdrawn in 1842 with the work unfin­
ished . However, a model of the "difference engine" was
demonstrated at the International Exhibition of 1862-and a
difference engine was later used for calculating the life tables
needed for computing Insurance premiums.

There were many reasons why the ambitious "difference
engine" was never completed . It required accurate machining
of mechanical parts before the necessary techniques had been
established. One of Charles Babbage's co-workers was

5

Whitworth who, after this salutory experience, went on to lay
down the principles of mechanical engineering practice.
The invention was ahead of the technology. If we remember
that ~his v:ork began before the era of the steam railway*, we
can 1magme the technological difficulties which Babbage
encountered. Society was beginning to realise that physical
labo~r could be assisted by machines, but it was not ready to
consider how the drudgery of mental and clerical work could
also be alleviated. Babbage realised that the difference engine
was capable of assisting in the computations required for one,
and only one, particular problem-the production of math­
ematical tables. The mechanism would have to be altered to
solve a different class of problems. The difficulties of manu­
facturing that one piece of hardware, combined with the
appalling prospect of starting all over again to manufacture
hardware to solve a different problem, caused him to think
again. It led him to suggest the idea of a basic computing mill,
capable of performing a few standard operations on numbers
h~ld in a mechanical memory, and a mechanism whereby the
nnll could ~e. controlled to carry out these operations in the
sequence reqmred to complete the computation. The numbers
in the memory and the sequence-or program-of operations
could be readily changed to make the mill solve many problems.
The mechanism he used to effect the program control was the
Jacquard punched roll system, used to control the patterns
produced by weaving looms. Just as one Jacquard loom could
be made to produce a wide range of patterns, so could the mill
be made to complete a wide range of computations. This
program-controlled mill he called the "analytical engine"
which he invented in 1833.

The ideas about the exact form of the engine and the methods
of programming it were developed in collaboration with the
daughter of Lord Byron, Ada Augusta Countess of Lovelace,
who was the first computer programmer.

Charles Babbage's enthusiasm for the analytical engine

*It is interesting to note that Babbage collaborated with I. K. Burne! of Great
Western fame and designed the first dynamometer car.

6

deflected him from his ambitious difference engine but the
i1:adequacies of the technology let him down agai~, and he
died one hundred years ago, in 1871, without seeing his
engines in operation. But he left behind the concept of a
general _-purpose computer with programmed control, which is
the basis of all modern computers.

The next pioneer was Hollerith who, in the 1890s, took the
Jacquard punched roll and invented the punched card to
assist in the computations required by the U.S. census. This
idea was later developed, and found application in commercial
data processing.

The advance of telephone technology led to the develop­
ment of the electro-magnetic relay which was used by the Bell
Telephone Laboratories in the construction of a computer in
1933. Relays were again used by Harvard University in the
construction of a computer similar to the analytical engine.
This was completed in 1944-one hundred and eleven years
after Babbage conceived the idea.

Radio and the explosive growth of electronics during the
second world war, produced the technology which made it
possible for the Moore School of Electrical Engineering at the
University of Pensylvannia to build the first electronic computer
the ENIAC, in 1946.

By now, the form of the computer was beginning to emerge
and was clarified by the contributions of Turing and Von
Neuman. Turing put Babbage's concept on a sound theoretical
basis by developing the idea of a universal logical computing
machine which could be transformed into different particular
machines by the superposition of programs. The hardware of
the universal machine could be made to function to suit the
particular requirement by the superposition of software. Each
particular combination of hardware and software existing as a
mach~ne which can be more readily understood by its user,
who 1s able to control it by writing simple programs in a
language which he readily understands.

Von Neuman considered the structure of such machines.
He realised that the most suitable number representing scheme
within the hardware was the binary system. Data could be

7

efficiently represented as combinations of the Boolean truth
values by the absence or presence of an electrical voltage or
current. Logical, hence arithmetic, operations could be
accomplished by the opening and closing of electrical switches.
Furthermore, the instructions to control the sequence of the
program could also be represented, or coded, in a similar way.
Thus both types of information within the machine - data and
instructions-could be represented by the binary system. The
next step was to suggest that the memory unit attached to the
mill of the engine be used to store both the data and instruc­
tions required to execute a particular task. This stored program
computer offered many advantages ; the program roll could
be read once into the memory and the program executed from
the memory at a high rate. The program could be made to
alter itself within the memory ; a repetitive operatio .u could
be programmed as a single sequence, obeyed many times by
instructions which permit recycling of the sequence over and
over again ; the ability to test the state of data in the memory
and, as a result of the test, cause the next instruction to be
taken out of sequence, i.e. to conditionally jump to another
part of the program, made it possible to break out of a closed
cycle and proceed to the next part of the program. These are
the basic ingredients of the comput er as we know it today.
Such a machine is shown in Fig. I. The data and instructions
necessary for the computation are first read from the input
punched roll into pre-assigned locations, or addresses, within
the memory. To obey the program, the Program Control
Device presents the address of the first instruction to the mem­
ory ; the instruction is read into a Present Instruction Register ,
from where its components are routed to present the address of
the Data to the memory, to obtain the operand required b)
the MILL, and the MILL operation is selected. The operand is
processed by the MILL and it is then ready for the Program
Control Device to access the next instruction, and so on.
During the course of the computation, answers are formed in
the memory from whence they are written on to the Output
Roll, as required.

8

INPUT

DEVICE
OUTPUT ~
DEVIC'"E--~'----,,-✓_ Ji

r- _____ MEMORY __ _

I ,--------,
- ---7

I
I

FIND
1 INFORMATION

I
INSTRUCTIONS t-'-1 -----I

&
I IN
: MEMORY DATA I
1--,-,--..--,_--,r--_JI
L ___ - - ------ - - - - _J

ADDRESS OF
OPERAND IN

OPERANDS

MEMORY
PRESENT INSTRUCTION

ADDRESS OPERATION

ADDRESS OF

INSTRUCTION
IN MEMORY

PROGRAM
CONTROL

MILL

LOGICAL
&

ARITHMETIC
OPERATIONS

CHOOSE
MILL
OPERATION

FIG. 1 BASIC STORED PROGRAM COMPUTER

This complicated diagram can be subdivided into three
major sections :-

(I) !nput a~d Output mechanisms for communicating
mformat10n between the computer and its user.

(2) The Memory to store all the information required by
the computer to complete its task.

(3) The Mill, and the circuits to route information within
the computer and to control the various stages in the
process .

To trace the development of the technology of each of these
sections, let us consider the evolution of comput ers at the
University of Manchester. This evolution is typical of that
which occurred at other major centres in the world.

9

In 1947 Professor F. C. Williams returned to the Depart­
ment of Electrical Engineering in the Univ ersity of Manchester
from T.R.E. with the idea that a memory could be based on
the persistence-or afterglow-of a cathode ray tube (CRT).
He demonstrated that a pattern of binary digits could be stored
on the face of a CRT and the persistence could be maintained
by reading each digit in turn, before it had died away comple­
tely, and then restoring it to its original state of brilliance . This
tube formed the basis of the first experimental machine which
obeyed its first program in the autumn of 1947. It had a simple
mill-or accumulator-and arithmetic operations, routing,
and related control were accomplished by thermionic valve
circuits. The input mechanism was a simple binary keyboard,
and the output was obtained by visual inspection of the CRT.
Williams and Tom Kilburn (now Professor of Computer
Science at the University of Manchester) went on to construct
several prototype machines until a large-scale machine was
built in 1949-a development which formed the basis for the
Ferranti Mk. I Computer in 1951, the first commercially
available computer in the world. This machine was based on
the CRT memory which, though well-matched to the speed of
the accumulator circuits, was of limited size, storing only 5 1 2

numbers of data or instructions. The size of the memory was
increased by adding magnetic drums on which 650,000
binary digits, or bits, of information were stored in much the
same way as speech is recorded on a magnetic tape. Input
facilities were provided by a photoelectric paper tape reader,
whilst output was obtained by a mechanical paper tape punch
and teleprinter. Use of the prototype machines had created a
demand for certain facilities to improve programming efficiency
the most notable of these being the address modification, or
indexing mechanism*. Developments in thermionic valve

*It is interesting at this point to record the contributions made by three Welsh­
men. D. B. G. Edwards, of Pontypridd (now Professor of Computer Engineering
at the University of Manchester , who has contributed in many ways to the
development of computing at Manchester) ; G. E. Thomas, from Port Talbot (now
Director of the Edinburgh Regional Computer Centre) ; and E. T. Warburton,
also of Pontypridd (now doyen of computer designers in British Industry) . All
three were involved in the design of these early machines , which owed much to
their originality, determination, and engineering skill.

10

technology made it possible to produce a faster more reliable
computer ~hich was de~eloped_by Ferranti Ltd .' as the Mercur;
co_mputer m 1956. This machme also contained an improved
~mll ca~able o_f performing operations on numbers represented
~n fl.oatmg-pomt from-a further demonstration of the users'
mfluence on the machine specification.

An experi~ental transistorised computer was operating in
_1953 which mfluenced the design of such machines by British
mdustry, but the next major advance began in 1958 at the
start of what became the ATLAS Computer .

By 1958 there had been ten years experience in the use of
computers at Manchester. Two types of user were beginning to
emerge. The first h~d la_rge problems, which could sensibly
use muc? of the machme time based on a few programs which,
once ':'ntten and tested, would run many times on different
sets ofmput data. The second had a list of many small problems
each requiring a different program, and probably only one run
on the computer to produce results. The large problem users
-:,-vere_ pr~pared to take a long time to understand fully the
mtencacies of the computer, to acquire the necessary prog­
ramming skills, and to learn the language of the hardware.
The small probl em users found this less rewarding. They
den:i~nd_ed that the hardware be augmented by the super­
posit10nmg of_ software to present to them a language which
t~ey could qmckly learn to use with accuracy. These so-called
high-level languages, or Autocodes, are translated into the
hardware language by Compiler programs in the machine.
The J?roble1:1 facing the ATLAS designers was to produce a
~achme ':'hich would provide facilities to assist the compilers
m p_roducmg hardware language programs which would run
efficiently when compared with programs written directly in
the_ . ~ardware language by skilled programmers. These
facilities had to be provided in a way which would not cheat the
hardware language programmer by reducing the efficiency of
the machine.

The Yon Neuman _type memory by this time was provided
by a high-speed ferrite core memory, in which each bit of
information is remembered by the direction of magnetisation

I I

of a ferrite ring, backed by a large magnetic drum memory.
A similar memory hierarchy existed on the earlier machines in
which the programmer had to arrange for information to be
brought down from the drum (it was actually located on the
floor above), to be processed in the high-speed memory.
Much skill was required of the programmer to anticipate the
time at which the relevant piece of information passed under
the fixed reading station, located above the surface of the
rotating drum ; also the working space of the memory was
restricted to the size of the high-speed memory. This led to
many programming problems connected with the movement
of information up from the high-speed memory to make room
for that brought down drom the drum. The problem was
solved by allowing the ATLAS programmer to think of the
memory working area as one level equal to that available on
the drum. In practice, the computer Mill still operated on
information contained in the high-speed ferrite core memory,
and transfers between the drum and the core were effected
automatically on demand. This one-level memory concept
was a major advance which had unforeseen ramifications ­
which we shall consider later.

The successful improvement in the ease of computer use was
bound to increas e the number of users and jobs to be processed.
Each job has to be fed into the computer and produces data
which must be fed out. The traffic through the peripheral
input/output devices would increase. Whilst there had been
many improvements in the efficiency of existing peripherals,
and new ones, such as magnetic tape, line printer, and graphic
displays were being rigorously developed, there was still a
large discrepancy between the speed of any one peripheral and
the computing rate within the machine. The only way to keep
pace was to attach many peripherals onto a single computer and
allow simultaneous transfers between them and its memory.
This Time Sharing of a powerful computer between many
concurrent activities was made possible by the inherently
high speed of the computer plus hardware facilities which
permitted special software-known as Supervisor or Operating
System-to be superimposed to manage the flow of information.

12

' These were some of the problems faced by the ATLAS project.
They would not have been solved but for the significant
advance which had occurred in the technology of computer
hardware. We have already noted the development of the
ferrite core memory. This offered greater reliability and higher
speed than could be obtained by the CRT. The other major
development was that of semiconductor devices, the diode and
the transistor, which supplanted thermionic devices as the
basic components of the circuits in the Mill, routing and
control sections of the computer. These were more reliable,
consumed less power than their predecessors, and offered the
possibility of parallel processing of information within the
computer. Numbers could be added, not one digit at a time
in a single circuit, but all digits at once by many circuits. The
smaller size and inherent speed of these devices caused the
designers to be concerned about the path length of information
routes and the time taken for an electrical signal to pass along
a piece of wire, determined ultimately by the speed of light.

During the infancy of this project, many semiconductor
circuits were invented and evaluated to produce the range of
basic circuits which could be constructed in sufficient numbers
to build the machine. Different methods of using the ferrite core
were tried until the most suitable memory was designed.
Designers of the Mill and related circuits experimented with
different ways to use the basic devices until a design philosophy
was established. A prototype machine was built to test the
major technological innovations.*

The next phase was marked by the drawing up of the final
design specification, followed by the long process of design
documentation, construction, inspection, and commissioning of

. *~his is one of the most exciting phases of a major project , similar in its emotive
s1gmfica1:ce to when your first child beigns to walk, or learns to read. When he is
takmg his first steps you ~onder if hw will ever wak l, until at last one joyful day
da:"ns when he walks as 1f he h~d been doing it all his life. After this day you
qmckly forget that there was a time when he could not walk and it is taken for
granted. So, in the development ofa computer, there is a tim e'w hen it cannot add
two and two together . One feels it should be able to , but it cannot. One makes
many_tes'.s f<;> fin? the reason , until the last wire finally falls into place and, amid
greatJubilat10n , 1t adds correctly. From then on one takes it for granted and goes
on to face many oth er tribulations and joys. '

the machine to reach a stage of reliability at which it could
take on its computing load. During this phase, principles of
sound engineering practice had to be established, and the
existing computer used to assist in the production of design
documents and to simulate some of the more complicated
designs. Maintenance engineers had to be trained and suitable
test procedures evaluated so that the computer could continue
to give reliable service. The stage of maturity was reached
during the early 1 960s when the software, comprising both
compilers and supervisor, was able to give the users the
facilities they required ; and the hardware level of reliability
was such that the shift maintenance engineers were able to
clear faults without calling the designer out of his bed in the
wee small hours of the morning.

The first production model of the ATLAS provided computing
facilities to the University until it was finally switched off last
month. Several production models were manufactured and
are still in use in important computer centres in the United
Kingdom. Some of the concepts pioneered in ATLAS were
ahead of their time and have only recently been incorporated
into other commercial computers. It became the paragon with
which all the modern large computers are compared.

Once the computer was providing a service to users, the
engineers were naturally banned from trying to improve its
performance by testing new circuits or devices since during,
and shortly after, each test the impaired reliability of the
computer would be intolerable, and such changes to the hard­
ware would have serious repercussions on the software, and
hence the user programs . The software writers were similarly
banned from making changes to proven software, but were ·
able to add features and monitor the efficiency of the total
system and the way in which it operated, to give guidance in
the drawing up of the specification of its successor.

By 1966 it became possible to review the ATLAS design and
its usage in the light of developments elsewhere in Computer
Technology. Most of the computer users never saw its hard­
ware. They tossed their programs into a wire tray on the floor
below and returned a few hours later to collect their output

l
I

from the same wire tray. Some users never came to Manchester
their local terminal equipment being linked by telephone line
direct into the computer. The remoteness of the user presents
difficulties during the program development phase when
programming faults are detected by the machine and reported
to the programmer. The delay between handing in the
program and obtaining the report is often inconvenient and
distorts the programmer's thought process. Other computer
centres provided interactive program development facilities
by which the programmer could sit at a teleprinter console
and key his program direct into the machine, check it, and
make the necessary corrections until it was satisfactory. Fully
to incorporate these facilities on top of the existing batch
processing service required more extensive resources than were
available in the ATLAS System.

The hardware of a large time-sharing computer is shown in
Fig. 2 . It consists of a MrLL and its associated circuits now
known as a Central Processing Unit (CPU), a main memory
to hold the information required by the CPU during its
execution of the program, a large backing memory holding
data and software, the peripherals for the batch processing
service, card and tape readers and punches, line printers, etc.,
and the interactive consoles-some local, some remote at
the end of telephone lines, with a computer (Peripheral
Processing Unit) to assist in the management of the information
flow. If one stood amidst the peripheral equipment one would
see tapes being fed-in via several tape readers, at the same time
as cards are being punched with output data, at the same time
as characters are being printed, at the same time as puctures
are being painted on the graphics terminals, and at the same
time as several programmers are developing programs at their
interactive consoles. This hive of activity depends on the
inherent high speed of the CPU hardware, plus the ability of
the operating system software to marshall and co-ordinate.

What the operating system must do is to transform the
hardware of Fig. 2 into the conceptual system shown in Fig. 3
in which each of the activities or processes is granted a virtual

15

TAPE CARD
REA DERS READERS LINE GRAPHICS INTERA CTIVE

& & PRINTERS TERMINALS CONSOLES
PUNCHES PUNCHES

I I
I I

PERIPHERA L

PROCESSING

UNIT

MAIN I I BACKING
MEMORY I I MEMORY

CENTRAL

PROCESSING
UNIT (CPU)

FIG. 2 BLOCK DIAGRAM OF TIME SHARING COMPUTER- ACTUAL

F ILE

SYSTEM

I
I

I
I
I
I
I
I
I
I
I
I
I

-----1 :- --7
I

VIRTUA L I
ME MORY I

I
I
I

VIRTUA L I
PROCESSOR I

I
I

I PROCESS
I A
I I
L _ __ _ __J

I
,--- - 1-1----,
!
I
I
I
I
I

I
I
I
I
I
I

VIRTUAL

MEMORY

I
VIRTUAL

PR OCESSOR

I PROCESS

I
I
I
I
t
I
I
I
I

I B I
I
L _ _ __ _ _ _J

PER IPHERAL

INPUT / OUTPUT

DEVICES

I

.-- ,-l----,
VIRTUAL

MEMORY

I
VIRTUAL

PROCESS OR

PROCESS
C

L _ _ ___ _J

FIG. 3 BLOCK DIAGRAM OF TIME SHARING COMPUTER- VIRTUAL

16

\

...

memory and a virtual processor, which have access to a com­
mon file store and peripheral devices.

Let us consider three typical concurrent processes :

Process A : A large program requiring much CPU time.
Process B : A program to control the flow of data to a

line printer.
Process C : A program under development at an

interactive console .

Let us assume that the CPU and memory are operating on
Process A which is in the middle of a matrix inversion (say)
and that the line printer becomes ready to receive new data.
Process A will be suspended and Process B entered to copy
data from the memory to the line printer. When Process B
has finished its task, Process A will be re-established and allo­
wed to continue with its matrix inv ersion where it left off.
After a while, Process A may be suspended to allow Process C
to test the present status of the program under development,
after which there is a return to Process A, and so on. In spite
of all this concurrent activity, the line printer is able to print
lines continously ; the programmer appears to have the whole
of a machine at his desposal to develop his program, and whilst
Process A may take longer to completion than if it were the
only process in the machine, even the user of large programs
benefits since, whilst Process A is being executed he may also
be getting output from another of his programs by Process B,
and the total turn-round time, from putting the program in,
to getting the answers out, will not suffer appreciably.

In order for the operating system to effect the mapping of
Fig. 3 on to Fig. 2, the hardware must provide facilities which
permit the rapid suspension and re-establishment of a process,
to allow information in different virtual memories to exist side
by side in the same actual main memory, and to prevent one
virtual processor from accessing private information in the
virtual memory of another, yet allow processes to share common
information. A key to the solution of these complex problems
is the One Level Memory concept developed on ATLAS to
disguise its main memory-backing store hierarchy from the

17

programmer. This concept enables the actual processor to
offer, to all concurrent processes, a large memory space which
may be sub-divided to give each process its virtual memory.
Overlapping of the virtual memory of one process with that
is of another allowed to permit sharing of information,
and protection facilities can be readily incorporated.

Whereas any such concept can be implemented by super­
position of software on to a machine, the full benefit can be
enjoyed only if special facilities are built into its hardware.
For this to happen, the hardware designer must be aware of
the total software problem, attempt to isolate those stages in
its solution which can benefit from the provision of special
facilities, and have a complete grasp of the potential power of
the hardware technology and its ability to provide them
efficiently.

In the case of the One Level Memory concept, a major
problem is to translate the large address of the virtual memory
into the smaller address of the actual memory. The hardware
solution is to provide a special address translation mechanism
known as an associative or content addressable memory . Such
a mechanism became an economic possibility after the develop­
ment of integrated semiconductor circuits. These superseded
the discrete semiconductor circuits of the ATLAS and offered
more complexity at less cost, with higher reliability at higher
speed.

The features of the new circuits may be exploited in many
styles. At one extreme the hardware designer may exploit the
speed and complexity to produce extremely fast arithmetic and
data processing facilities with little regard to the needs of the
software. This results in a very powerful CPU capable of a
high rate of computation which can be exploited by the writer
of programs in a low-level language, but which deny the high­
level languages all but a fraction of this rate. At the other
extreme, the total software requirements may impose a design
specification on the hardware designer and he must endeavour
to make the best use of his technology to meet this specification.
The most successful style, however, is to allow the hardware and
software considerations to interact to produce a specification

18

which satisfies both ; to obtain a machine structure in which
the special facilities may be provided by either _software or
hardware ; by software in the small, low c?st, machmes, and by
hardware in the larger, more expensive, more powerful,
machines towards the top of a manufacturer's range.

By 1966 such a specification was. beginning t_o evolve at
Manchester. Methods of using and mterconnectmg the new
integrated circuits had become established, and memory
technology had developed to keep pace by the introduction of
plated wire memories to replace the high speed core memory,
also cheaper core memories to provide low cost mass memo~y.

The University was again ready to embark on a maJor
computer project and, with S.R.C . s~ppo~t plus the co­
operation of ICL, the MU-5 computer is bemg constructed.
It will soon be an operating system-more powerful than the
ATLAS.

If we now consider the body of knowledge which makes up
Computer Technology, we find a hierarchy of levels as show_n
in Fig. 4. At the lowest level-the circuit level-is the basic
electrical engineering of the components of the. h_ardware.
This involves a knowledge of the desired charactenstics of the
circuits which perform logical operations and provide the
various levels of memory ; how these characteristics can be
provided by available devices an~ t?e way in which sue~
devices need to be developed to obtam improved performance ,
how to solve the electrical problems which arise when such
devices are connected together, plus the technology of the
peripheral equipment. The next level above, logi:al ~esig_n,
includes a methodology for connecting the basic circmts
together to perform the various operations ~n a comput~r s1:ch
as the addition circuit of the MILL and its control circmt~ ­
Above this is the machine structure, or architecture level. This
is where the interaction between the hardware and software
takes place ; where the requirements of the us:r an_d software
writers are considered to arrive at the specificat10n of the
logical units which will best mak~ up the total hardware of the
machine. For this level to funct10n properly there must ~~ a
clear understanding of the software problems and the ability

19

to isolate those which can be effectively solved within the
capabilities of the hardware. Next comes the system software,
the writing of the compilers, and the operating system and
other programs which enable the last level-the user progra­
mmers-to make efficient use of the machines.

The performance at each level is dependant on the resources
which can be provided by the next lower level. Ultimately, the
performance of the user programs depend upon the power of
the circuits produced by the lowest levels. The way in which
the performace of these circuits has developed over the years is
shown by the graph in Fig. 5. The vertical axis measures the
rate at which an addition can be performed on numbers of
ten decimal digits. Each point plotted shows the rate obtained
by the addition circuit of a Manchester computer in the year
when the hardware was first demonstrated. In 194 7 the first
adder could operate at the rate of one thousand per second.
By 1952 improvements in thermionic valve technology and
design skill resulted in a jump to thirty thousand per second.
The next jump to three million per second was achieved by the
exploitation of semi conductor devices, and the present rate of
twenty million per second is made possible by semi conductor
integrated circuits and improved constructional techniques.
Each of these advances was matched by a corresponding
advance in the technology of the main memory and the
development of strategies to ensure that the flow of information
between it and the central processor unit kept pace. It is
interesting to note that rate of growth prior to 1958 was greater
than that obtained since then, suggesting that we are appro­
aching the speed limit of electronic technology, which is when
we can no longer reduce the path length between circuits, and
must accept the ultimate limitation imposed by the speed of
light . A modern integrated circuit delays the passage of
information through it by some 2 nanoseconds (2. rn- 0 sees).
This is similar to the delay along a piece of wire one foot in
length. The physical size of the circuit and the distance
between circuits begin to have a serious effect upon the speed of
the machine. The size is determined to some extent by the fact
that the circuit has to be handled at various stages of manu-

20

USER PROGRAMS

SYSTEM SOFTWARE

MACHINE STRUCTURE
(ARCHITECTURE)

LOGICAL DESIGN

_CIRCUIT DESIGN

FIG. 4 HIERARCHY OF COMPUTER TECHNOLOGY

NUMBER OF
TEN DECIMAL
DIGIT ADDITIONS

PER SECOND

100,000,000

10,000,000

1,000,000

{

3,765,432,109
e.g. 1,234,567,891

5,000,000,000

SEMICONDUCTOR
INTEGRATED

CIRCUITS
} ...

{
SEMICOND
DEVICES

UCTOR.

100,000

10,000

1,000

{

IMPROVED
THERMIONIC VALVE &

DESIGN TECHNIQUES

LJ. ___ ..J.._ ___ _._ ____ _

1947 1952

MK1 MERCURY

1958
ATLAS

FIG. 5 GROWTH OF COMPUTING

21

I

1969
MUS

POWER-

YEAR

COMPUTER

'

~

I
I

II

-

facture and test ; it must be in a package large enough to be
picked up by average sized fingers and thumbs. The distance
between circuits depends upon the size of the circuits and the
space to connect the interconnecting wires, power supply, ~nd
allow cooling fluid to take the heat away. Any further reduct10n
in circuit delay will have to be associated with the ability to
pack more circuits into the package, between finger and thumb,
if possible requiring less power and co~ling than !?resent pack­
ages. Further speed improvements _will be ~btamed _by d:v­
elopments of machine structures which permit a prohferat10n
of parallel processing circuits to be exploited by the system
software.

One might ask why there is this thirst for speed. There are
two answers to this question. First, there are important large
problems which demand it, and secondly, it is cheaper to
serve several small users on one fast machine than to provide
each with his own slow one . The thrust towards a fast large
computer leaves many developments in its wake which be~efit
the machines required in situations which the large, fast, time­
shared machines cannot reach-process control computers,
vehicular control computers, dedicated laboratory instru-
mentation computers, etc. .

The growth in speed since 1947 has been the greatest smgle
factor which has given the upper levels of the computer
technology hierarchy the nesessary power to produce the
present impact of computers.

If one examines the present state of development of computer
technology, one finds the mature levels at the bottom of the
hierarchy, maturity decreasing as one ascends. . . .

The circuit level is well aware of the needs of its immediate
user, the logic design level. It is also well aware ?f the con­
straints placed upon it by the known laws of physics and has
the advantage of many yearx of engi1:1eering experience in th_e
application of electronics technology m the fields of commum­
cation, Radar and control. Design standards and codes of good
practice which were established in these fields have form:d the
basis for sound computer engineering. This level awaits the
discovery of a new physical penomenon, with an information

22

processmg capability, before it can return to a pioneering
phase.

Logical design is restricted by the logic circuits which can
be engineered economically and reliably by the circuit level.
The laws of logical design based on Boolean algebra are well
understood and principles of good design are well established,
now that a logical design can be fully tested by means of
simulation before the circuit is built. The functional circuits
which make up a computing system are well understood and
can be specified to the satisfaction of the logic designers and
the computer architects. Whilst there is always scope for
development at this level resulting from its interaction with its
two neighbours, it awaits the birth of a new idea-possibly
based on adaptive logic-for it to return to the pioneering
phase.

The machine structure level is taking longer to reach
maturity. This is due on the one hand to the flexibility offered
by the functional units produced at the logic level, and on the
other to the complexity and flexibility offered to the system
software by any computer system. Furthermore it takes several
years for a computer system to be conceived, designed, con­
structed, and tested in the user environment ; and the
environment itself changes as the user requirements develop.

It cannot reach maturity until the next level above is able to
define the computer structures which it requires. This level,
system software, is still developing. It_ has to keep_ pace with_ a
shifting user requirement and new ideas resultmg from Its
interaction with the computer structure level. It does not
have the benefit of sound engineering practice, partly because
most of the workers in this field come from a non-engineering
background and enjoy experimenting with their new toy.
There are signs that principles of software engineering are
becoming established as the innovators realise th~t their id_eas
have to be implemented by a body of people orgamsed to bmld,
test and maintain the software in the same way as any other
pie~e of engineering. When the software fun~tional u:1its can
be specified as precisely as the hardware funct10nal umts, then
the software and machine structure levels will have reached
maturity.

23

Though these principles of sound engineering practice will
be established and a semblance of maturity will be achieved,
these two levels still have to interact with the top level, the user.
There will always be pioneer users since the potential field of
application of computer technology is not restricted by the
nature of the technology itself but by what the human mind
chooses for it. Man will continually discover new uses for
information processing technology ; uses which we cannot
perceive at present ; uses which are bound to involve develop­
ments in the upper levels of the hierarchy ; uses which will
place new demands on all its levels.

A university which offers a course of instruction in Computer
Technology must ensure that it can teach all levels of the
hierarchy in a co-ordinated manner. In its research it can
concentrate on a particular level or take a microcosm of the
hierarchy by considering an area of application which involves
all levels . Such a microcosm could be the application of
computers in instrumentation. One example, in the medical
field, is to provide computing facilities for the interpretation
of chart recordings such as electro-encephlographs. We can
all appreciate that much of the information on such charts is
meaningless and that skill is needed to extract that which is
important for the diagnosis. The doctor requires a computer,
in the path of the signals between that patient and the chart
recorder, to eliminate the unwanted information. This
computer could be a general purpose computer with special
circuits to translate the signals from the patient into the number
representing system of the hardware of the computer. A sup­
ervisor program within the computer could manage the flow
of information from several monitor points on the patient to the
various processes which carry out the information reduction.
These processes themselves could be written in a suitable
high level language which provides the doctor with convenient,
easy to use, control facilities. Such computer systems have
been in use for some time, and experience has shown that a
special class of general purpose computers is required to
satisfy the many needs at an economic price. It is possible to
write down the specification of such a machine and plan a

24

-,---

i

development project involving all levels of the hierarchy .
Such projects are undertaken by industry, but certain ones can
be fruitfully carried out by a University as a vehicle for main­
taining competence and developing new ideas. The new ideas
may occur at only one level of the hierarchy, but it is to be
expected that they will result from a better understanding of
the interaction of the levels. To begin with, these projects
will involve the writing of special software for an existing
computer, plus the provision of special perepherals. The next
stage will be to design special computers to suit the particular
requirements. This will become more economical as powerful,
complex, integrated circuits proliferate. We may evolve away
from the concepts of Babbage, Turing, and Von Neuman, and
solve each new user problem by designing a special new
machine from the lower levels up, providing only sufficeint
hardware and software to satisfy each user's needs.

This approach will satisfy only a section of the computer
technology users. Most will carry out their information
processing on general purpose computers. In the past we have
seen a range of general purpose computers to serve the many
and varied user needs. However, we are beginning to app­
reciate that the economics of the situation dictate that user
needs be served by a few large, powerful, computers and a
proliferation of many small low cost machines. This polar­
isation of computers into large and small will come about
partly because of the development of integrated circuits which
will make it possible to place a low cost computer in a small
package. (We are already seeing this impact in the field of
desk-top calculators which are now based on integrated
circuits and may soon be as commonplace as a students' slide
rule), and partly because of the development of a data com­
munications network which will make it convenient for users
with large problems to have them processed on a remote
large computer. Such a network will open the door to many
new information processing developments. The information
terminal may become as familiar as the telephone. The
housewife could use the terminal to order her groceries,
budget her account, decide on the day's menu, and control
her cooker.

-

The future offers much scope for research at all levels of the
hierarchy.

In conclusion let us attempt to sum up the situation. The
technology has reached a stage at which one computer can
perform as much arithmetic in one second as one man can be
expected to perform in his entire working life. Furthermor, the
computer is not expected to make an error in that one second,
whereas there must be few men who have not made an error in
their working lives. We are beginning to realise that there are
facets to man's information processing needs other than sheer
accurate arithmetic computation. Some of these needs are
already being served to some extent in areas such as education,
information retrieval, medicine, and commerce. As these needs
develop, the technology will produce systems with a few
simple controls which are easy to use. The basic components,
the hardware and the software, will develop and combine to
achieve this aim, and be able to cope with the new uses which
man invents for the technology ; uses which will in the long
term improve the quality of life.

Finally, I cannot think of a better way to end this lecture
than to quote Professor F. C. Williams (who was this year
admitted to an honorary degree by the University of Wales) :-

"Lest the great achievement to date should make us swollen­
headed, or alternatively, make us despair of further imp­
rovement, let me draw your attention to the small object
glued to the centre of this card (a seed). This object is so
small that I doubt if you all can see it, yet it contains all the
information, data, and instructions necessary to control the
manufacture of an unending and ever-increasing supply of
roses."

UNIVERSITY OF WALES
SWANSEA

