
GOMERIAN PRESS

LLANDYSUL

COMPUTER SCIENCE :
PAST, PRESENT, and FUTURE

Inaugural Lecture of the
Professor of Computation
delivered at the College
on October 29, 1968

by

D. C. COOPER
B.sc., PH.D. (London)

UNIVERSITY COLLEGE OF SWANSEA

Cla rk: lr
Aaae■aioa ao : &. ~ / , b ~ o/

Loa1tlon:

IWANIIA UNIVE .. 81TV COLLEGE

UNIVERSITY COLLEGE OF SWANSEA

COMPUTER SCIENCE :
PAST, PRESENT, and FUTURE

Inaugural Lecture of the
Professor of Computation
delivered at the College
on October 29, 1968

by
D. C. COOPER

B.Sc . , PH.D. (London)

COMPUTER SCIENCE :
PAST, PRESENT AND FUTURE

THE fact that there has been a tremendous increase in
the number of computers and in the areas of their

application during the last twenty years must now be
known to most people. The first stored program electronic
digital computer was completed in 1948 ; in 1950 there
were about twenty such machines in existence, in 1960

about 10,000 and today around 70,000 with perhaps
another 25,000 on order. Whilst many of today's
computers are much larger and more expensive than
previous machines, they are so much more powerful that
the cost per computation has shown a fall as dramatic as
this increase in their numbers.

The number of different applications of computers has
also greatly expanded, so much so that now they affect
our lives in many ways. In the commercial field for
example they are used for such purposes as accounts
keeping, payroll calculations, sales analysis, the keeping
of stock records, the recently launched GIRO system,
the analysis of surveys (perhaps a general census or traffic
flow). All science and engineering disciplines use com
puters in many different kinds of calculations and
computers are now being used directly in design processes,
perhaps with the aid of some kind of two-dimensional
communication devices. Computers find application in
many Arts subjects, for example archaeological analyses,
the analysis of historical records, authorship problems in
linguistics and library cataloguing. Artistic endeavours
themselves have a new medium in the computer itself, a
recent exhibition in London was entirely devoted to the
Computer and the Arts with many examples in which
machines of some kind either produced the art form or
were themselves part of it.

'This is a very incomplete list : I don't intend this lec
ture to be a catalogue of computer applications but rather
I hope I may take the widespread use of computers as

3

an established fact. During these last twenty years I believe
there have been several landmarks in the development of
computers and computing. I wish to describe some of these
and then devote most of this lecture to one particular event
which is taking place at the moment, and will turn out to
be as significant as any of the previous landmarks.

The important event which began this great expansion
was the introduction of electronics, the use of valve
circuits instead of electro-magnetic mechanisms. This
brought about an increase in speed of around 100, of
itself perhaps not so striking but it broke through a
barrier. Instead of machines being used mainly as devices
much less prone to mistakes than ourselves, we could now
perform calculations with their aid which would have
been very reluctantly performed, if at all, without their
use. Thus new methods could be used and new problems
tackled. Of course this factor of I oo is insignificant by
present day standards ; we now have a further increase in
speed by a factor of at least 10,000.

At the same time as the introduction of electronics a
second landmark emerged, indeed without it the increase
in speed would have been of little use. This was the
concept of a stored program. By this is meant that,
instead of us telling the machine what it has to do at
every stage, we store within its own memory system a
complete list of instructions. These instructions will
enable the machine to work at its own speed, rather than
at the s1ow rate with which we could give information to
the machine about its course of action. This stored
program would have to include many different sets of
instructions allowing the computer to select the correct set
depending on the circumstances arising in the particular
job. These stored programs may be readily changed,
thus giving us general purpose devices.

Another significant event was the development of high
level languages (sometimes called problem oriented
languages, or automatic programming languages). As we
have to provide the computer with its list of instructions,

4

or program, we need some kind of language in which
to express this program. The basic language which
computers are built to understand is very primitive
indeed. It is a simple language in the sense that each
individual ' sentence ', i.e. instruction, can say very little.
Expressing a practical procedure in this language is a
tedious operation subject to many mistakes. What we do
then is to invent a language closer to our actual problems,
a language which is easier to use than the basic machine
language hence making the task of writing a program
much quicker and less error-prone. Having designed this
language we can provide a program to translate from this
language into the basic machine language. Such programs
are called compilers and I shall be referring to these again
later. The provision of a compiler is a complex task, but
once this is done everyone else's programming is greatly
simplified. An example of an early programming
language which is still the most widely used in the
scientific area is Fortran ; an early British language which
made its mark was Niercury Autocode.

Related to the concept of a high level language is
another important concept, that of data structures. Our
machines are built to operate on a few simple kinds of
data, usually either one list of numbers or one list of
alphabetic and numeric characters. Our actual problems
are usually concerned with more complex data structures,
for examplem any small lists, perhaps lists of lists, files
containing records and each record further divided,
several objects of different kinds with different properties
such as might occur in simulating traffic flow in a com
puter, and so on. The early high level languages made a
start on this problem by defining as part of the language
system more useful data structures, and then the computer
would provide a way of representing these more complex
structures in terms of the machine's own structure.
Particularly significant was a simple method devised for
handling lists whose length could vary in a way which
could not be predicted.

5

An engineering development which provoked a land
mark in computer development was the complete
transition from valves to transistors. From the computer
users' angle an important result was the gr~atly increased
reliability achieved, which made machmes. so m1;1ch
easier to use. Also important was the decrease m physical
size and power requirements thus allowing eit~e~ m?re
convenient smaller computers or more sophistication
without a corresponding increase in other factors:

A further event of great significance in computmg was
the development of operating systems of various kinds.
In the early years each particular job for a computer had
to be individually dealt with by a computer operator. If
a job is to run on a computer for some time, perhaps an
hour or more then the time the operator takes to get the
computer ready for the job is not very significant. How
ever if there are several small jobs to be run the_ computer
could be idle a good proportion of its time, perhaps
waiting for the operator to put some cards into the card
reader, or to type in the necessary information about the
job, or just waiting for the operat~r to _t:11 th~ computer
to start the next job. Most of this waitmg time c~n _be
eliminated if a program can be stored permanently _msi~e
the computer telling the computer how to orgamze its
own flow of work.

The first such systems were "batch processors,". they
enabled an operator to provide the computer with a
complete batch of jobs which the computer then ran one
after the other with no stops. A later development was
"multi-processors" in which, ra~her than th~ computer
running one job after another, it could decide to ~ave
several different jobs at various stages of completion.
The advantage of this is that if one job ge~s held up ~or
some reason (perhaps waiting for a magnetic tape device
to be correctly positioned) then the computer can
continue with some other job. Such an operating system
also enables a computer user to be brought into the
system. He can be given some communication device and

6

watch the progress of his program. If necessary, he could
stop it, or change it in some way, or give it further data.
We then have what is called an on-line system, a develop
ment of great importance. However, many problems
remain to be solved before we can provide completely
general purpose operating systems. Such complete
systems have been implemented, but so far they have
tended to be rather inefficient.

Another landmark in computing is, I believe, the
publication of the Algol report. Algol is a high level
language, designed mainly for scientific applications,
which appeared sometime after the Fortran language. It
is a practicable language used widely, although not as
widely as · Fortran for reasons unconnected with the
merits of the two languages. However, its significance lay
in the precision with which the language was defined and
the coherency and consistency of the language itself. It
was not a hotch potch of rules and exceptions as previous
languages had tended to be. It set high standards for its
day, although we now know various lacks and some
inconsistencies in it.

I do not think anyone in the computer field today
would deny the significance of the landmarks I have
described, although there are certainly other events which
could lay claim to being of great importance. There are
certainly some in particular application areas, for
example, in Numerical Analysis or Artificial Intelligence,
and there are also some in the engineering side of comput
er design about which I am not proficient to comment.
Indeed both hardware (i.e. engineering) and software
(i.e. programming) developments have merged in some
of the above events. However, rather than discuss
further these events, or describe others, I now propose to
turn to a very important landmark which I believe is
being created now.

This is the emergence of a new discipline with its own
goals, techniques and especially educational programmes.
Computer Science is the most common name for this

7

Ill

subject, and I shall refer to it by this name, but other
names are used, for example, Computing Science,
Information Science, Systems and Communication
Science.

Again I shall start with some facts to illustrate this
development. Results of surveys published last year
indicate that in the U.S. in 1964-65 there were about 150
colleges of various kinds giving degrees in Computer
Science, or whose content involved a substantial amount
of Computer Science ; the figure is now around 400 and
includes all the major U.S. universities. In this country a
report issued last year stated that eleven British uni
versities and six colleges of technology gave B.Sc. degrees
either wholly in Computer Science or joint programmes
(usually with mathematics or electrical engineering). I
know of three more not on that list and of others who are
planning such programmes. A recent advertisement by
a well-known bank offered scholarships to enable students
to get a degree in Computer Science. At least one examin
ing body allows Computer Science as an A-level subject.

Many recent issues of scientific journals have included
articles about Computer Science education ; they have
contained surveys, proposed syllabuses, attempted defin
itions and recommended degree programmes. A very
good book with the title University Education in Computing
Science has just appeared including many facts and
opinions. Several conferences devoted to the topic have
been held ; both the U.S. and British computing societies
have very active committees considering the problems of
education in Computer Science.

The Science Research Council, which supports and
gives grants for scientific research, has ten separate
committees to cover different areas ; one of these is for
Computing Science. The U.S. National Academy of
Sciences has established a Computer Science and Engin
eering Board, showing incidentally in its title that
Computer Science is involved as much with engineering
thought as with scientific theory.

8

What is Computer Science ? It is easier to say what it
is not. It is not a subject based on the binary system, an
impression often given in popular books and television
programmes. I have more than once heard computers
given as the reason for teaching the binary system in
schools. Teaching different scales of notation is valuable
for the demonstration of a mathematical concept, it is no
basis for teaching computing principles and programming.
The two important ideas to bring out in first courses are
the concept of a program and the concept of representing
data of one kind in terms of data of another kind. It is
not a subject based on Fortran--or any other particular
programming language. Whilst in a first course it is
important to teach a particular language, care must be
taken not to leave the impression that computers can only
do that which can be expressed in one particular language.

Perhaps the only possible definition of Computer
Science, and indeed of many other subjects including
mathematics and electrical engineering, is that it consists
of that collection of activities which are studied in
Computer Science departments (or Mathematics depart
ments, or Electrical Engineering departments). There is
now a lot of material which is concerned with computers,
with computational processes, with methods for storing
data, with methods for retrieving data, with languages for
communication with machines, with problem solving
techniques, with electronic circuit design, with modelling
processes, with models of computers, with efficiency of
processes, with communication links and networks. None
of these individual areas is a new area of study, but all are
being studied now with more depth and interaction than
in the past. All are connected with the representation
and processing of information in some way, be it numbers,
lists, formulae, English text or anything else, and with the
different ways information may be stored and manip
ulated. Many individual studies could certainly be
classed as Mathematics, others as other subjects, but it is
misleading to think of the whole study as being a branch of

9

Mathematics, or of Electrical Engineering, or of any
other subject. Computer Science is an amalgamation of
theory and practice to a level probably not present in any
other subject.

Whether these diverse sides can be viewed as parts of
some coherent whole remains to be seen, whether this
new subject contains enough firm foundation of lasting
benefit also remains to be seen. I strongly believe it does,
there are many others of this opinion and of course, some
with the opposite view. I think we are a lot clearer now
than we were only three years ago, but still some way from
a firm demonstration that we have a new coherent
discipline. However, I believe time will indeed show this.

Now to be more explicit about the subject. There
seem to be three sides, a theoretical side, an engineering
and design side and a methodological side. Let me now
discuss each of these in turn.

On the theoretical side there are several different
facets. I have mentioned before the problems of data
structures and their representation. Even though our
computer can only represent its data in a simple manner
(perhaps as a single list of numbers) yet our actual
problems have much more structure. Does this mean the
computer cannot help us ? Of course not, it is rather
easy to think of ways of representing these more complex
structures as list of numbers, we can use certain numbers
as markers, counters, or pointers to other information.
Indeed there are many ways of doing this, and this
creates the problems. Is this way better than that way ?
How easy is it to retrieve information, or to change it ?
How do we define one structure in terms of another ?
What is a suitable language for expressing this ? What
are the consequences of storing information this way ?
To tackle this kind of problem we need a framework in
which we can make precise these vague questions, i.e. a
mathematical theory.

Then again we have language problems. We must tell
computers what to do and also tell each other what we

10

have done. As I indicated before, we can, to a large
extent, design our own language ; having done this, a
compiler must be provided to translate from this language
into the machine's own language. Many such compilers
have been written. The first compilers were rather ad hoe
devices and only computer experts could produce them.
Now we understand a lot about the constituent parts of a
compiler, about possible techniques and the relations
between them, we know restrictions on language design
that allow the writing of efficient compilers, we know
suitable data structures and languages in which to write
our compilers. All this is now being taught as standard
material to undergraduates. However even with all this
knowledge one does not automatically produce a good
compiler, the knowledge has to be used in the right way.
But the understanding is there, enabling better systems to
be produced than before and much more easily.

Theory can be applied to particular problems. Thus
we can try to prove results such as that one program
does the same thing as another program, but more
efficiently ; or that the results of this program satisfy
some particular property ; or even that no program can
exist to solve this problem. Several results such as this
last proposition are known and perhaps the most easily
explainable is concerned with algebraic expressions.
Suppose we provide ourselves with a system for doing
algebra in a computer (several such exist) we then might
wish to write a program to test if two expressions were
equal (in the sense that (a+b)2=a 2+2ab+b 2

). It has
been proved that, if our algebraic expressions are allowed
to contain trigonometric and logarithmic functions, no
such general equality testing program can exist. Several
similar results are known, including some in the theory of
languages and compilers mentioned earlier. In simple
cases we can indeed prove facts about particular programs,
but we are far from being able to consider most of the
programs which arise in practice. We need other theories
and more powerful techniques.

II

On the theoretical side there has also been much work
on various models of computation. Theoretical comput
ers, which model some or all of the behaviour of actual
computers, are defined and then investigated. For
example they can be classified according to their structure
or according to the kind of problems they can solve, or the
relations between different computers may be investigated.

I have now discussed some of the theo1etical problems
of Computer Science ; this side is important but it is only
half the story. So let us now turn to the second aspect, the
engineering and design side.

By this I do not only mean the actual design of comput
ers and their components. Rather I mean the use of the
kind of theory we already have and of know-how gained
by experience in order to design and implement useful
systems. These systems may be a complete computer
with its many interconnecting units, a compiler, an
operating system, a simulation of a factory or any task
performed on a computer.

It is very pleasant ifwe have a tneory telling us how to
write our program or design our system. But we usually
do not. Still the system has to be designed. Here good
design principles and experimentation come in. We are
not sure which method will work, or which combination
of units is best. So we try various ways, perhaps by
writing different programs or perhaps by simulation.
We try out methods. How do we choose representative
data on which to test our program ? How do we draw
conclusions from our results ? How does one analyse the
problem in the first instance ? What particular data
structures or programming language should we use ?
We have to go by the experiences of others, collecting
evidence for best approaches and perhaps at the same
time carrying out theoretical investigations guided by our
experiences.

On this engineering side we must develop good
approaches, we must teach, as far as we know it, the
right way to tackle large complex problems, we must

12

teach good experimental techniques. Physics or Chemistry
students, for example, are taught these techniques ; it
seems eq ,.ially important to establish in computer users
good programming philosophies . Indeed this is essential
if a user's results are to have any validity as it is easy to
get answers from a machine, but difficult to have any
confidence that they are right.

As well as this program design side there is also the
equipment side. What are the requirements to be
satisfied by a computer system ? How can these be met ?
Where should compromises be made ? Economic
considerations will play an important part. Is this extra
sophistication worth the price ? If we use this design
philosophy what will the consequences be and what wiil
their effect be on users ? How can we implement this
idea in an economic way, or mass produce this device ?
This side is clearly important, but as I have a rather
limited knowledge of the electrical engineering side I shall
have to leave my remarks at this vague level.

I have now discussed the theoretical and the engineering
side of Computer Science, so now let us turn to the third
side, the methodological side. In Computer Science we
can recognise common structures or processes which
come perhaps from some particular application area or
perhaps from several such areas which have a common
pattern in the way they use the computer. Studies cf
these particular processes can therefore be undertaken.

One such methodology is numerical mathematics, the
study of processes for solving mathematical equations of
various kinds. We must study both their theoretical
properties and also their computational properties,
taking into account the fact that computers only compute
with numbers in an approximate way. This, for scientific
computer users, is a most important study required in
many application areas, however it is not basic to
Computer Science. Computer Science techniques and
theory are of interest and relevance to numerical users,
but they are of much wider relevance. It is none the less

an important methodology, and Computer Scientists
must know something about it.

An~ther n:ethodology is concerned with the techniques
~sed m . busmess data processing. How do we keep
mformat10n on files, how is it referred to what about its

. . '
security both from accidental damage and also from
unau~horised acc_ess ? A large amount of practical
experience and wISdom has been built up and should be
known to Computer Scientists.
. List proce~sing t~chniques is another example, this

~ime of a particular kmd of process which finds application
m many . ar~as. Often a particular task can be expressed
most easily m a language which allows operatious on lists
of symbols. These symbols could be of different kinds
perhaps numbers, perhaps characters, but very frequent!;
they are themselv~s names of other lists, thus giving rise
to a complex entity referred to as a list structure . In
many cases these lists will need to be changed, perhaps
have extra symbols added to them or deleted from them.
Some kinds of programming languages are more suited
than others ~or this kin? of application. Different ways
of representmg such list structures in computers are
known and . experience has been gained in many ways.

_Another import_ant area, and one which has grown up
with computers, is the subject ieferred to as Artificial
Intelligence, or Machine Intelligence. This is a vague
term covering many different problems, but these
problems usually involve complex situations in which
som~ kind of pattern recognition techniques are needed
to pick out relevant facts. This then leads to the machine
~orming one or more plans of action, trying these out and
if unsuccessful trying something else, forming some other
plan, . or _eve~tually perhaps just giving up. Specific
mvestigat10ns mclude the simulation of human behaviour
in chosen probl~m solving tasks, the design of intelligent
robots, th~ playmg of games such as chess, the proving of
mathematical theorems, the design of a machine that
understands instructions given in English, the co-ope1 ation

of a machine and a human in solving suitable problems .
All these are activities normally thought of as requiring
intelligence of some kind, the problems are diverse yet
some common useful methods have been recognized.
One important side to this activity is to investigate ways
whereby machines can learn to improve on their perform
ance . Several such tasks have been programmed, for
example a draughts playing program which learns by
the games it plays and robots of various kinds which learn
to avoid obstacles.

There are several other important methodologies, for
example linguistics and simulation, but I do not intend to
discuss these further.

The main point of this lecture is that the emergence of
Computer Science as a new discipline is with us now, and
that in years to come will be regarded as an important
event in Computing. However this is not to say that the
~ind of work I have been talking about has not gone on
smce the first days of computers. Indeed it has, and
perhaps it is interesting to look at some early articles in
the computing literature .

In Volume I of the Journal of the Association for
Computing Machinery, issued in 1954, we find an
article with the title ' On single versus triple address
computing machines ' . Here simplified models are set up
of two computers which refer to their data in different
ways, and then economic comparisons made. Other early
issues include a very comprehensive article on sorting
techniques, this compares many different methods for
sorting information stored on machine accessible files
according to some ordering criterion. There is also an
article on optimising programs showing how the efficiency
of a program on a particular type of computer can be
mechanically improved. The first volume of the British
Computer Journal, issued in 1958, contains an article on
parallel programming, introducing an idea now familiar
to all computer people in which is explored the possibility
of computers performing more than one operation at a

time. Most early articles are straightforward descriptions
of particular applications, but articles suggesting the use
of new programming languages soon occur.

Computer Science research has been with us from the
first days of computers, but of course it goes back much
further than that. Indeed the physical existence of
computers is not necessary for much of the work I have
been describing, work concerned with information
structures and processes. We have to go back at least to
Euclid for the concept of a program-for what else is his
various constructions for performing given tasks using
only a pair of compasses and a straight edge ? Much
theoretical work on the definition of a computation, and
on what could be computed and what could not, was
carried out before the first electronic digital computer was
switched on. But there is no doubt that the coming of the
computer has given this kind of work a tremendous
impetus, so much so that now it is recognized by many
that it is no longer adequate to embrace it within existing
subject boundaries. There has been a great increase in
activity over the last few years. Good books, essential if
teaching of the subject is to spread, are now appearing,
where previously we only had a mass of programming
manuals. Reasonable curricula for University courses
have been published and are being given serious attention
by various bodies, although it is certain that these first
syllabuses will change. However we have made a start.

What of the future ? Clearly in spite of the increased
activity much remains to be done. In this country there
is a need for people. I can myself see the need for edu
cators and researchers and judging from the output of
commercial computer manufacturers, they too have a
desperate need for the right kind of person. Every
scientific subject needs some people willing to become
familiar with Computer Science and look for its appli
cations in their own subject. Computers provide us with a
powerful new tool, and create a need for more people to
consider the implications. It is hard to get good people

16

and the money to support them for the purpose of
thinking about how to solve problems, rather than
spending all their time solving given problems. In the
U.S. there are now several very good institutions with
Computer Scientists performing research and providing
good education. These departments, instead of the
handful of people they had some years ago, now may
have 20 or more people devoted to Computer Science type
work. In this country it is still not easy ; we have potent
ialities in several places, we have some departg1ents and
educational programmes. Many of these I believe even
the originators would agree are rather a mixed bag of
topics lacking coherency and with gaps. I do not blame
the institutions in any way, the time to start is now and
things will be that way when one starts something new.
Gradually we shall see new blood coming into these
departments to fill the gaps and to contribute to the
setting up of better integrated programmes.

I believe the situation will be much clearer in, say,
six years time when modification and revisions have
taken place and when we have had more experience.
Then the existence of this new subject will be _ in no
doubt.

There are several problems of great practical import
ance being worked on now which will be solved by then.
Perhaps the most obvious at the moment is concerned
with the design of efficient operating systems and with
better communications facilities, both more flexible
equipment and more flexible languages. Memories are
now becoming available, which are capable of storing
millions of items of information, information which can be
retrieved at random and in the order of a millionth of a
second. This could have a big effect on the future ; we
do however need new concepts a:nd theories so that we
may organise this kind of memory. The conversational
use of computers, that is the ability to have immediate
access to a computer in order to use it as a direct extension

17

of one's own thinking, is now available to increasing
numbers of users, but is still in an early stage of its
development. Much more flexibility and consequently
more power will come . Within the next decade we shall
see ~h<: emer?ence <?f a few robots capable of quite
sophisticated mteract10ns with their environment. This
will involve much Computer Science research the

. . '
orgarnsmg of large amounts of data and the finding of
relevant facts. It will involve computer engineers and
Computer Scientists working closely together.

It is clear that Computer Science will flourish more in
some centres than others, although the basic ideas will be
available everywhere. However there is one obvious
requirement, and that is the provision of a suitable
computing environment. Computer Science in its
demands on computer time is like many other subjects :
we ~a_ve projects requiring no computer time, projects
requ _irmg moderate amounts of time and projects re
q~mng vast amounts of time. However there is a big
difference, the computer and all that goes on around it is
of central importance to our work. Computer Science
research will flourish even less well than other subjects in
an insufficient environment, for example with a badly
overloaded computer or a badly administered services
side, even though the work itself might not be making
much demands on computer time. Whether or not our
research interests need much computer time we shall
need quite large amounts of time if we are to fulfil our
educational function.

A recent U.S. report puts it this way. It is hard to see
how a master's programme in Computer Science can be
~onducted without the use of a centre of such quality that
its costs would be about one million dollars a year (or a
Ph.D. programme with costs of three times that amount).
Thes~ figures include rental of the computer or computers.
I believe we can provide good facilities at much less than
these figures-indeed we must do so-but the principle
implied here is right.

18

In thi~ lecture I have tried to give you some feel for this
new subJe_ct-ComputerScience; for its present state and
fo~ my views about it. There are areas of Comp..iter
Science about which I should have said more, perhaps
there are some about which I should have said less. In
place~ I have been vague, but to have said more would
have mvolved a whole course of lectures. I believe these
are exciting days, days in which we see the emergence of a
new discipline, a discipline which interconnects with all
others in many ways, yet a discipline which is developing
its own motivations and ways of thinking.

I look forward to seeing what the future will bring .
Perhaps the best way will be for me to attend the inaugural
lecture of some future Professor of Computer Science and
I shall be very interested to hear what he will have to say .

19

GOMERIAN PRESS, LLANDYSSUL

UNIVERSITY OF WALES
SWANSEA

